Ocean - estuary coupling

or

how does FW/estuary history affect ocean traits?

(Hatchery rearing strategies)

January 19, 2017 Brian Beckman, NWFWC brian.beckman@noaa.gov

Focus on yearling Chinook salmon

Outline

Brief review of NMFS juvenile salmon survey

Hatchery yearling Chinook salmon <u>vary</u> in the Columbia River

Hatchery yearling Chinook salmon vary in the Ocean

Size, growth and ocean <u>variability</u>

Size selective mortality

Survival "window"

NOAA Juvenile Salmon Ocean Survey

Survey Grid

NMFS/BPA Juvenile salmon - Plume Survey

```
1998 – test sampling/El Nino
```

1999 – 2005			
	May:	3 transects	
	June: Sept:	5-9 transects	
		6-9 transects	
2006 –	2012		
	May:	5-7 transects	
	June:	8-9 transects	
	Sept:	7-9 transects	
2013 –	2014		
	June:	8 transects	
2015	June:	8 transects	
2015	June: May:	8 transects 4 days	
2015		4 days	
2015 2016	May:	4 days	
	May:	4 days	

Outline

Brief review of NMFS juvenile salmon survey

Hatchery yearling Chinook salmon <u>vary</u> in the Columbia River

Hatchery yearling Chinook salmon vary in the Ocean

Size, growth and ocean <u>variability</u>

Size selective mortality

Survival "window"

Traits that vary:

Estuary and ocean entrance timing Estuary, Plume residence time Migration rate Size Growth rate many others.....

=> survival

By stock!

Genetic, geographic and phenotypic differences exist between Columbia River Chinook salmon populations

Ocean variation

Yearling Columbia River Chinook salmon* abundance in the survey varies by month, stock and year

*6 major stocks of Chinook salmon with yearling migrants 5 are listed under the Endangered Species Act 2006-2011

Relative proportion of yearling Chinook salmon by stock varies by in the ocean

2006-2011

Weight of fish caught in the ocean varies > 2-fold by stock

Size in the ocean is correlated to size at release

Management implications ?

Biomass (abundance x weight) varies by stock, month and year

Ocean entry year

Management implications ?

Technological advances have made it possible to assess growth rate and population of origin from individual fish caught at sea

The hormone IGF1 is a growth index

Growth and survival

Growth varies inter-annually

June

June

Growth is related to survival of spring Chinook (most years)

Size and Growth

Yearling Columbia R Chinook salmon: marine growth varies with size

p<0.001, r²=0.20

IGF1 - size relationships vary between years in May

(slope of regression line)

Snake River spring Chinook salmon

IGF1 - size relationships vary between years due to varying ocean conditions

Snake River spring Chinook salmon

Management implications ?

PIT-tagged spring Chinook are released from Carson NFH

Carson data

Queried PTAGIS PIT-tags at Bonneville Adult Ladder by release year minijacks jacks age 4 generated mean size at tagging by release year for surviving adults minijacks jacks age 4

mean size at tagging is a surrogate for smolt size

=> related mean size at tagging of returning adults to ocean conditions

Size selective mortality varies with ocean conditions Carson sp Chinook

Management implications ?

Survival window

Catch of yearling Chinook (CPUE) varies in June

Catch of yearling Chinook is correlated to Adult return (+2), (1998-2013)

Age 2 male minijacks return 2 - 3 months post-release - 1 year prior to jacks

Graphic by Justin Peters PIT-tagged minijacks migrate downstream and back upstream the same year they were released

Beckman & Larsen 2005

Minijack counts are related to Adult counts (+2) @ Willamette Falls

Carson minijack SAR is correlated to age 4 SAR (2002 – 2013)

Survival is set within two months of ocean entrance?

Management implications ?

What happens in the estuary?