Ocean - estuary coupling

or

how does FW/estuary history affect ocean traits?

(Hatchery rearing strategies)

Brian Beckman, NWFWC
Focus on yearling Chinook salmon
brian.beckman@noaa.gov

Outline

Brief review of NMFS juvenile salmon survey
Hatchery yearling Chinook salmon vary in the Columbia River

Hatchery yearling Chinook salmon vary in the Ocean

Size, growth and ocean variability

Size selective mortality

Survival "window"

NOAA Juvenile Salmon Ocean Survey

3
3
3
3
3
3
3
a ${ }^{4}$

Pacific Drone

Survey Grid

NMFS/BPA Juvenile salmon - Plume Survey

1998 - test sampling/El Nino

$1999-2005$	
May:	3 transects
June:	$5-9$ transects
Sept:	$6-9$ transects

2006-2012
May: 5-7 transects
June: 8-9 transects
Sept: 7-9 transects
2013-2014
June: 8 transects
2015
May: 4 days
June: 8 transects
2016
May: 7 days
June: 8 transects

Outline

Brief review of NMFS juvenile salmon survey

Hatchery yearling Chinook salmon vary in the Columbia River

Hatchery yearling Chinook salmon vary in the Ocean

Size, growth and ocean variability
Size selective mortality

Survival "window"

Traits that vary:

Estuary and ocean entrance timing

Estuary, Plume residence time
Migration rate
Size
Growth rate
many others........

=> survival

By stock!

Genetic, geographic and phenotypic differences exist between Columbia River Chinook salmon populations

Ocean variation

Yearling Columbia River Chinook salmon* abundance in the survey varies by month, stock and year

Relative proportion of yearling Chinook salmon by stock varies by in the ocean

Weight of fish caught in the ocean varies > 2-fold by stock

Size in the ocean is correlated to size at release

Management implications ?

Biomass (abundance x weight) varies by stock, month and year

Management implications ?

Technological advances have made it possible to assess growth rate and population of origin from individual fish caught at sea

The hormone IGF1 is a growth index

Growth and survival

Growth varies inter-annually

June

Growth varies inter-annually and by stock

June

Growth is related to survival of spring Chinook (most years)

Size and Growth

Yearling Columbia R Chinook salmon: marine growth varies with size

IGF1 - size relationships vary between years in May
(slope of regression line)

Snake River spring Chinook salmon

IGF1-size relationships vary between years due to varying ocean conditions

Snake River spring Chinook salmon

Snake R spring Chinook

 IGF vs length slope varies with ocean conditionsBad ocean

Management implications ?

Size selective mortality of hatchery fish

PIT-tagged spring Chinook are released from Carson NFH

Carson data

Queried PTAGIS

PIT-tags at Bonneville Adult Ladder by release year minijacks jacks age 4
generated mean size at tagging by release year for surviving adults minijacks jacks age 4
mean size at tagging is a surrogate for smolt size
\#> related mean size at tagging of returning adults to ocean conditions

Size selective mortality varies with ocean conditions Carson sp Chinook

Management implications ?

Survival window

Catch of yearling Chinook (CPUE) varies in June

Catch of yearling Chinook is correlated to Adult return (+2), (1998-2013)

F=7.2
$p=0.02$
$\mathrm{r}^{2}=0.34$

June CPUE (fish/km towed) Wa Coast

Age 2 male minijacks return 2-3 months

 post-release - 1 year prior to jacks

PIT-tagged minijacks migrate downstream and back upstream the same year they were released

Minijack counts are related to Adult counts (+2) @ Willamette Falls

PIT-tagged spring Chinook are released from Carson NFH - possible to calculate Smolt to adult return (SAR)

Carson minijack SAR is correlated to age 4 SAR
(2002-2013)

Survival is set within two months of ocean entrance?

Management implications ?

What happens in the estuary?

