Richard Devlin Chair Oregon

Chuck Sams Oregon

Guy Norman Washington

Patrick Oshie Washington

Bo Downen Vice Chair Montana

Doug Grob Montana

> Jim Yost Idaho

Jeffery C. Allen Idaho

April 27, 2021

MEMORANDUM

TO: Council Members

FROM: Massoud Jourabchi, Steven Simmons

SUBJECT: Paths to Decarbonization Scenario Discussion

BACKGROUND:

- Presenters: Massoud Jourabchi, Steven Simmons
- Summary: The Paths to Decarbonization Scenario is an investigation into the extent to which greenhouse gas emissions can reduced from the entire Northwest Economy by the year 2050.

Numerous reduction strategies in transportation, building and appliance efficiency, fuel switching, carbon taxes and green hydrogen were tested. Each strategy was tested individually and when appropriate; combined with other strategies.

Strategies were also tested for reducing non-energy sources of emissions in the industrial, agricultural, and other sectors. The potential of greenhouse gas sinks to lower carbon intensities was also tested.

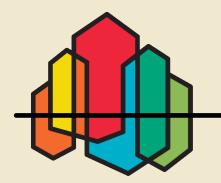
A new forecast scenario was developed for transportation to reflect recent policy and industry trends indicating the potential for a more aggressive move to electric vehicles in the light duty vehicle space. Hydrogen use was also modeled as an alternative fuel for transportation. Hydrogen fuel cell technology may provide a viable alternative to diesel powered longhaul freight trucking, which could result in significant demand growth for electricity from electrolysis hydrogen production while lowering emissions.

- Relevance: Analysis of methods to reduce greenhouse gas emissions is of key interest to the region
- Workplan: A.1 Develop and analyze scenarios analysis for the Power Plan

Background:

More Info: Scenarios https://www.nwcouncil.org/sites/default/files/2020_02_p2.pdf

> https://www.nwcouncil.org/news/exploring-key-power-supply-questionsthrough-scenario-analysis


Overview of Hydrogen https://www.nwcouncil.org/sites/default/files/2021_01_p2.pdf

Path to Decarbonization Scenario

Massoud Jourabchi

Steven Simmons

May 4, 2021

THE 2021 NORTHWEST

FOR A SECURE & AFFORDABLE ENERGY FUTURE

Introduction

To combat climate change - the states of Oregon and Washington have set goals and limits on future greenhouse gas emissions from their respective states

Oregon

45 % below 1990 levels by 2035 80 % below 1990 levels by 2050 Washington

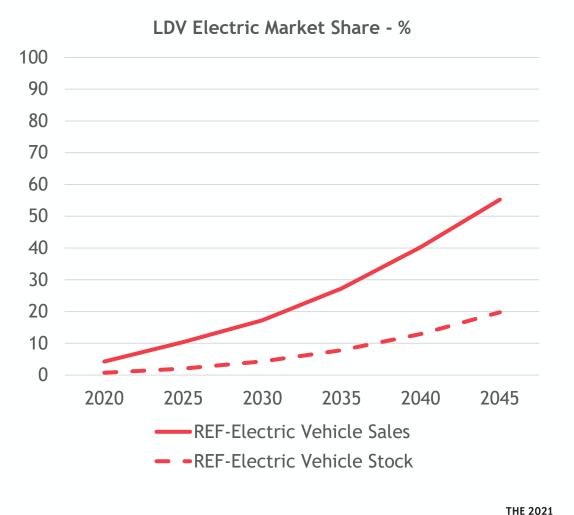
> 45 % below 1990 levels by 2030 70 % below 1990 levels by 2040 95 % below 1990 levels by 2050 and net zero emissions

For the 2021 Power Plan - in order to form a more comprehensive understanding of expected regional emissions - we expanded our forecasting out past the power sector to include the use of fuels for transportation, the home, the business and industry

The Paths to Decarbonization Scenario is an investigation into methods that can reduce greenhouse gas emissions from the entire economy - both energy related & non-energy related

Today's Agenda

- 1. Discussion of the Transportation Forecast H_2T Steven Simmons
- 2. Discussion of the Path to Decarbonization Massoud Jourabchi

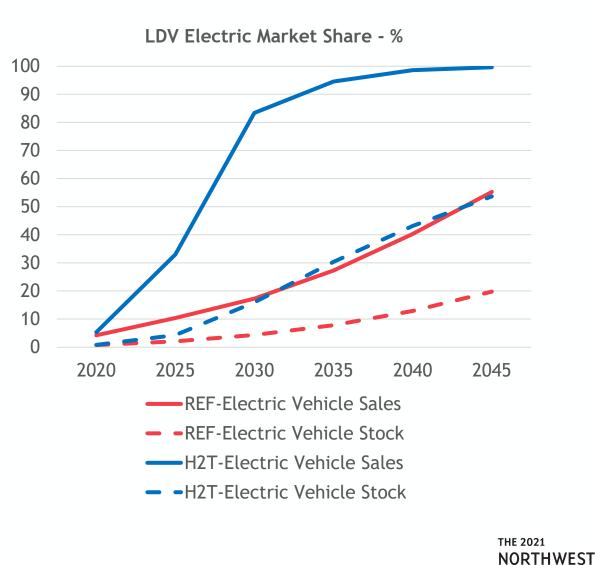

Hydrogen & Transportation Forecast (H₂T)

Steven Simmons

May 4, 2021

Reference Case for Transportation - **REF**

- Focused on electrification of the Light Duty Vehicle (LDV) space over time
- Results in modest growth in demand for electricity
- Emissions in the LDV space decline by 14 % from 2020 to 2045 even though vehicle miles traveled increases by 31 %
- Freight Trucks (HDV) begin to standout as the dominant emitter

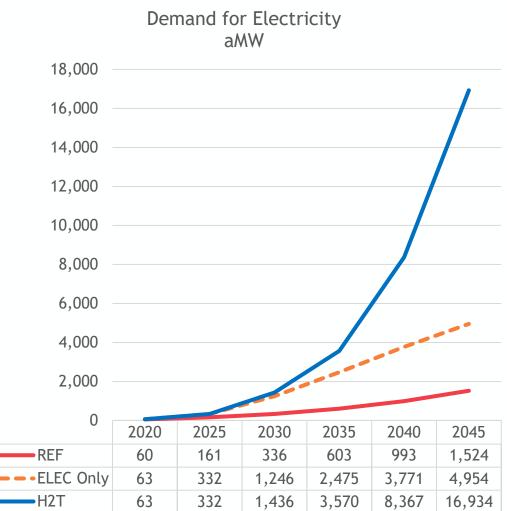


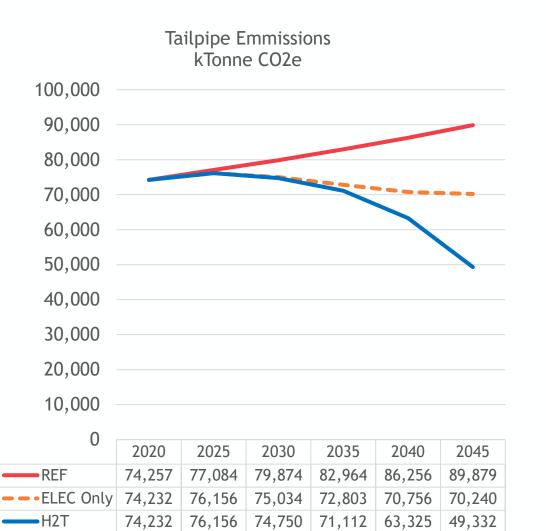
NORTHWEST POWER PLAN

5

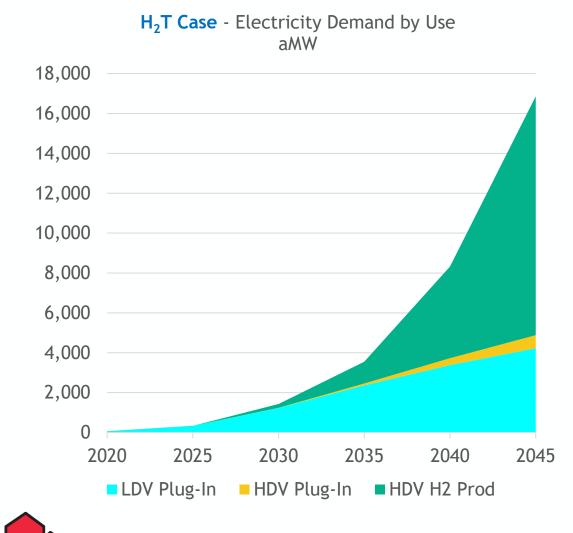
Hydrogen & Transportation Case – <u>H₂T</u>

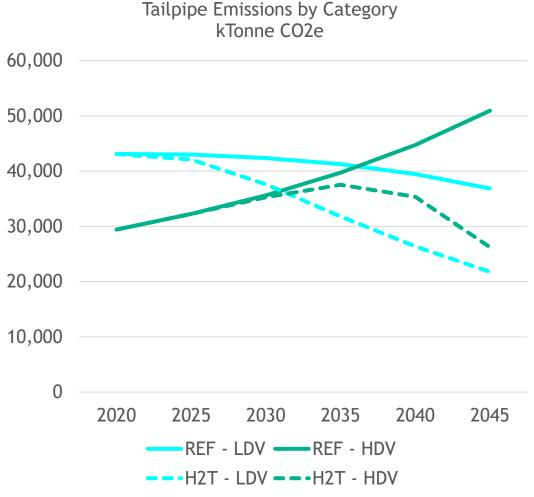
- Remains consistent with REF Case in terms of transportation requirements and modes i.e. miles traveled the same, ton-miles freight the same, no switching between train/marine/HDV
- Force a faster turn to Electric in LDV space (recent policy & industry trends)
- Move some light commercial delivery trucks to electric, more buses to electric
- Move to Hydrogen Fuel Cell for HDV – medium and large freight trucks
- New demand for electricity from Hydrogen production via Electrolysis and delivery

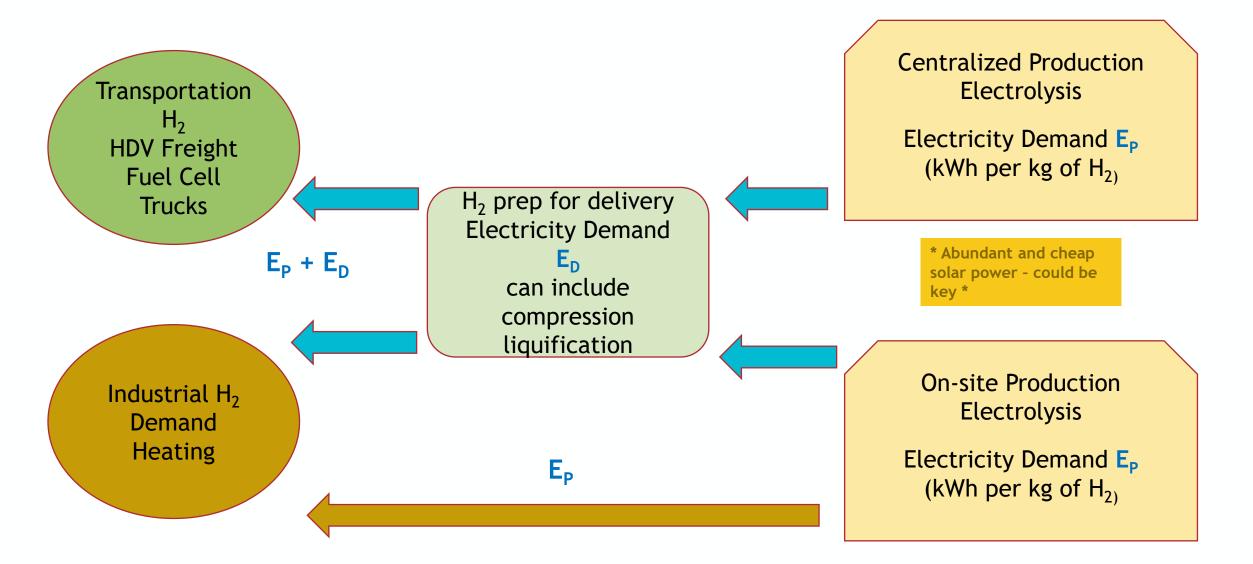



POWER PLAN

ELEC Only -


electrification changes only no H₂



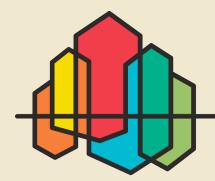

Results

More Results

THE 2021

Quick Summary of <u>H₂T</u>

Roadway Modes of Transportation


- 1. Kept requirements and modes consistent with REF Transportation Case
- 2. Earlier move to electric vehicle in LDV space, and gradual move to Hydrogen Fuel Cell in HDV freight space
- 3. Much lower emissions
- 4. Much less consumption of petrol products gasoline and diesel
- 5. Much more demand for Electricity

Pathways to Decarbonization Possible Strategies and Outcomes

Massoud Jourabchi

Steve Simmons

THE 2021 NORTHWEST

FOR A SECURE & AFFORDABLE ENERGY FUTURE

What are Pathways that can significantly Reduce (GHG) Emissions from NW economy?

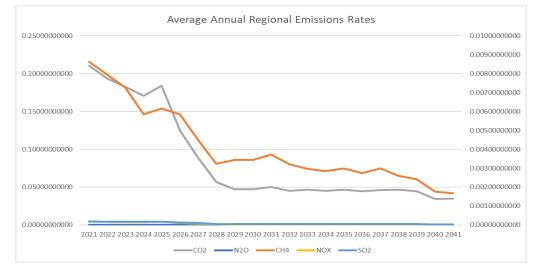
The primary focus is on reducing the energy-related emissions from:

- Use of fossil fuels in the Residential, Commercial, Industrial and Transportation, agricultural Sectors
- Electric Generation Systems
- Secondary focus is on reducing emissions from rest of the economy. The non-energy sectors, that provide the food we eat and things we make.
- Third area of focus is on Sinks for GHG emissions in land, forest.

Examples from	1	mples from 1		2 3.a		3b.	3с.	
end-use sectors (not a comprehensive list)	More efficio use of fossi fuels (natur gas, oil)	l	Conversion to Electricity	Greer	hvdrogen H7	More efficie of electricit		More distributed generation
Residential	Conserva	tion	Various end- uses			Conservation		Rooftop PV
Commercial	Conserva	tion	Various end- uses			Conservation		Rooftop PV
Industrial	Conserva	tion	Various end- uses	High temp applications		Conservation		Rooftop PV
Transportation	Higher <i>N</i> standar		Battery Electric Vehicles	Heavy Duty Vehicles/Marine				
the Gas and Gre Electric Systems not (not a comprehensive low		nor lov	a. reater mix of on-emitting or w emitting upply		4b. Early retirement of high emitting supply		4c. Cleaner fuel delivery systems	
Electric Genera Syste	tion	ş	Utility scale solar, wind geothermal, storage, and merging techs		Coal plants, inefficient natural gas plants		/ emis po	Reduce upstream Methane ssions to the ower plant ivery point
Natural Gas System (RNG)						Reduce Ipstream Methane ssions to all		

emissions to all delivery points

(RNG)


Methodology for GHG reduction Strategies

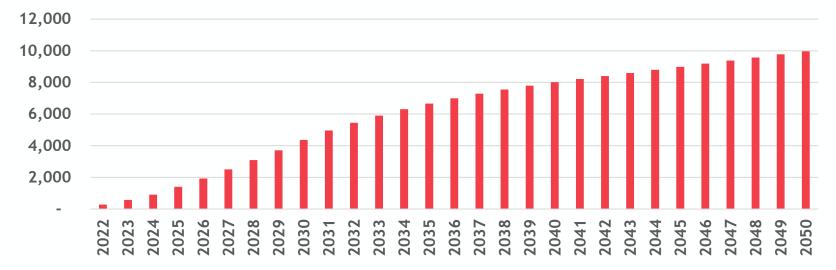
- After establishing a baseline or reference forecast . A number emission reduction strategies were evaluated.
- Each strategy was tested individually, then a subset were combined into a combined scenario.
- Yearly emissions from energy sector (electric power and fossil fuels) were calculated using emission rates from Aurora, and forecast of loads from long-term model (E2020).
- Economywide, non-energy sources and sinks are then combined with energy related emissions.
- Economywide Net Emissions were calculated for the region/state.

Key Exogenous Input – Emission Coefficients from Power Sector

- 2022-2041 Emission Coefficients for 6 pollutants are from Coal Retirement scenario.
- Average Regional Emissions Rate (tons/MWh)

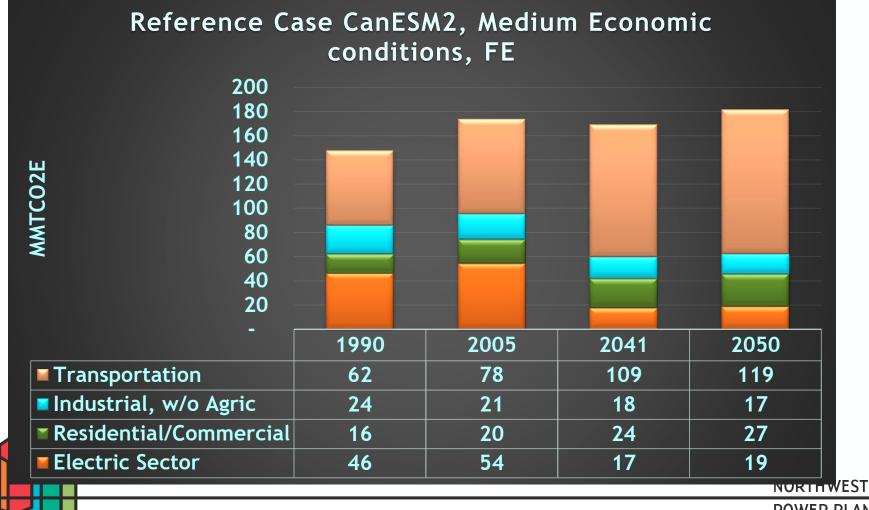
Reduction in emission coefficients

2022-2041	AAGR
N2O	-5%
CH4	-8%
CO2	-9%
NOX	-9%
SO2	-8%


Post 2041 emissions are kept at the 2041 levels.

We will test cases with declining emission coefficients for 2042-2050.

EE Targets


Energy Efficiency Technical Potential aMW

As a strategy we netting out all of EE technical potential from loads. Although loads go down by over 10,000 aMW by 2050 (from about 25,000 aMW to 15,000 aMW) GHG emissions in 2050 decrease by about 7 MMTCO2e. Proportionally speaking loads go down by 40% but emissions go down by 4%. Much less than expected. Reason being power system has very low emissions by 2050, so reduction in load does not significantly lower emissions.

> THE 2021 NORTHWEST POWER PLAN

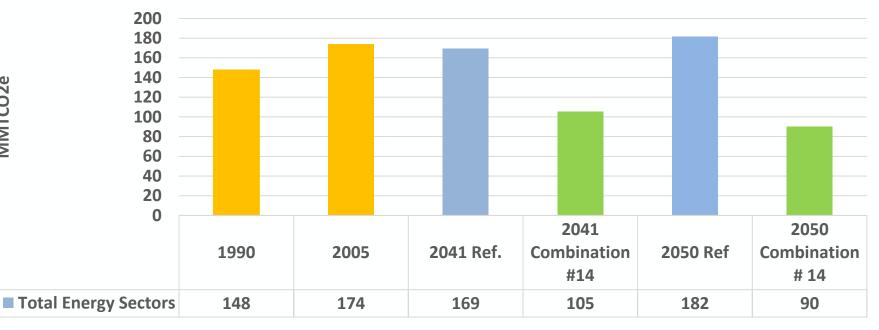
Reference Case <u>Energy System</u> GHG Emissions Prior to mitigation Strategies

ls this strategy included in the Combined Case	Transportation Mitigation Strategies	change by 2040	change by 2050
	Baseline (MMTCO2e)	169	182
YES	Model International Standards required a 2% per year reduction in CO2 emissions for all Air travel (starting in 2025) and Ocean Freight (starting in 2028)	(9)	(14)
YES	Set market share for electric BUS exogenously, 0.1% in 2020 growing to 94% in Idaho and Montana by 2050 and 100% for Oregon and Washington	(0.5)	(1)
NO	CAFÉ standards to increase to 100 MPG by 2050 from current 25 mpg	(3)	(5)
NO	CAFÉ standards to increase to 65 MPG by 2040 from current 25 mpg	(4)	(7)
YES	CAFÉ standards to increase to 80 MPG by 2040 from current 25 mpg	(4)	(7)
YES	Forced early retirement of older, inefficient gasoline & diesel fueled passenger vehicles and light duty trucks	(1)	(1)
YES	set market share for HDV2 vehicles exogenously, 0.5% in 2026 increasing to 100% by 2050	(2)	(4)
YES	set market share for HDV6 vehicles exogenously, 0.6% in 2026 increasing to 94% by 2050	(2)	(8)
YES	set market share for HDV8 vehicles exogenously, 0.6% in 2026 increasing to 94% by 2050	(3)	(13)
YES	Set market share for LDV vehicles exogenously set. Starting in 2020 Market share 1- 5% increasing to 100% by 2030, 2035, 2045 for Washington, Oregon, Idaho and Montana	(12)	(14)
YES	Increase Electric marine so marginal market share so that it goes to 50% by 2050	(5)	(9)
YES	Increase Electric Freight Train marginal market share so that it goes to 50% by 2050	(1)	(2)
YES	Reduce VMT per capita from 2020 levels by 1% per year	(11)	(13)
	Total for included strategies	(49)	(86)

Emission Reduction Impact of Efficiency Strategies

ficiency in Building aseline (MMTCO2e)	2041 169.2	2050
	160 2	
	103.2	181.6
crease Max. efficiency of residential lighting and appliance standards every years by 5%	(15.0)	(23.5
crease efficiency of residential lighting and appliance standards every 5 ars by 10%	(7.8)	(12.7
crease lighting efficacy – at 5% per year instead of current 3% per year	(0.2)	(0.3
ore Aggressive retrofit for Appliances	(13.5)	(15.7
creasing shell efficiency in multifamily (update building codes on a 5-year cle, 5% improvement per cycle)	(0.2)	(0.3
se proposed HUD standards for manufactured homes	(0.4)	(0.5
creasing shell efficiency in single family (update building codes on a 5-year cle, 5% improvement per cycle)	(1.8)	(2.9
educe size of new homes by 20% over the next 20 years (compared to base se)	(5.0)	(5.5
clude EE Technical Potential	(6.0)	(7.3
tal for included strategies	(20)	(23
	rease efficiency of residential lighting and appliance standards every 5 irs by 10% rease lighting efficacy – at 5% per year instead of current 3% per year re Aggressive retrofit for Appliances reasing shell efficiency in multifamily (update building codes on a 5-year ele, 5% improvement per cycle) e proposed HUD standards for manufactured homes reasing shell efficiency in single family (update building codes on a 5-year ele, 5% improvement per cycle) duce size of new homes by 20% over the next 20 years (compared to base se)	rease efficiency of residential lighting and appliance standards every 5 (7.8) rrs by 10% (7.8) rease lighting efficacy – at 5% per year instead of current 3% per year (0.2) re Aggressive retrofit for Appliances (13.5) reasing shell efficiency in multifamily (update building codes on a 5-year (0.2) e proposed HUD standards for manufactured homes (0.4) reasing shell efficiency in single family (update building codes on a 5-year (1.8) duce size of new homes by 20% over the next 20 years (compared to base (5.0) ude EE Technical Potential (6.0)

Emission Reduction Impact of Fuel-Switching and Conversion Strategies

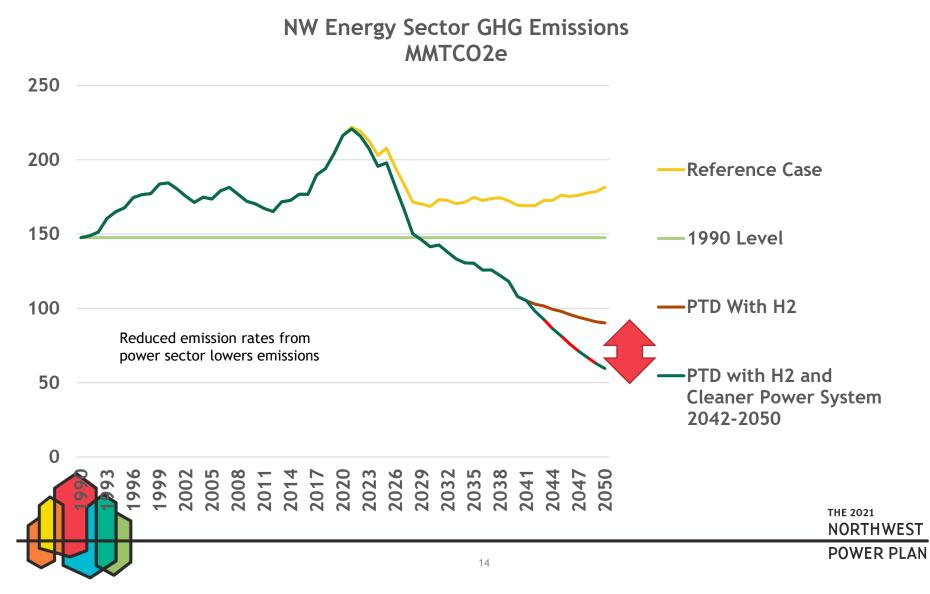

s this strategy ncluded in the Combined Case	Fuel Switching/conversions	Change by 2041	change by 2050
	Baseline	169	182
NO	Baseboard heating would be converted to heat pump upon replacement	(0.1)	(0.2)
NO	Requiring HP in place of zonal heating at end of life	(5.2)	(7.5)
NO	All other forms of heating fuel use is shifted to electricity upon natural replacement	(7.1)	(10.6)
NO	Water heating will be shifted to electric and heat pump	(1.4)	(2.0)
NO	Residential Cooking fuel will shift from fossil fuel to Electric.	(0.8)	(1.2)
NO	Moving all non-electric demands (wood, oil, natural gas, propane) to electric at end of equipment life in both residential sectors.	(14.8)	(19.4)
	Total for included strategies	-	-
			THE 2021 NORTH

Emission Reduction Impact Misc. Strategies Tested

Is this strategy			
included in the	Color DNO Inductrial and COO tax	•	change by
Combined Case	Solar, RNG, Industrial and CO2 tax	by 2041	2050
	Baseline (MMTCO2e)	169.2	181.6
YES	Increase ratio of battery to solar from 1 to 1 to one to five by 2050	(2.1)	(4.8)
	Reduce cost curves for Solar so by 2050 costs are 75% lower		
YES	compared to 2022	(0.2)	(0.1)
YES	Increase ITC for solar. ITC at 30%	(0.2)	(0.1)
		(012)	(011)
YES	Increased RNG penetration as a replacement for natural gas fuel	(2.6)	(4.1)
		(=:•)	()
YES	shift industrial fossil fuel demand to electricity	(2.8)	(4.4)
		(=:0)	()
YES	shift industrial fossil demand to electricity then Hydrogen	(3.5)	(5.6)
		(0.0)	(0.0)
YES	reflect increased electrical demand from H2 production	2.3	3.9
NO	Nominal \$50/ton eCO2 charge by 2050	(1.2)	(1.9)
			()
YES	Nominal \$100/ton eCO2 charge by 2050	(2.0)	(3.5)
	Total for included strategies	(11.04)	
			THE 2021 NORTHWEST
	11	ł	POWER PLAN

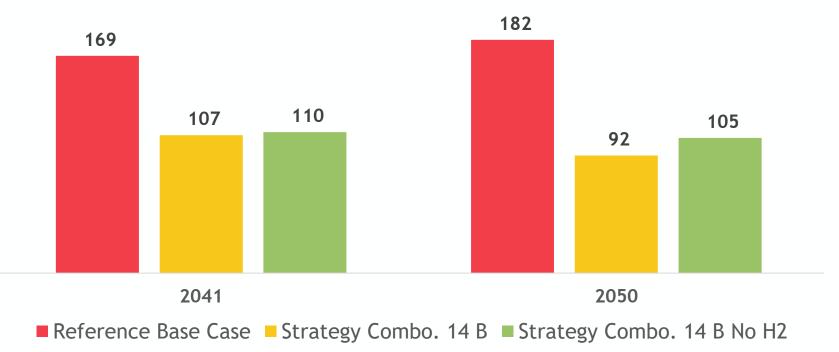
In Combinations above Strategies Could lower GHG Emissions from Residential, Commercial, **Industrial, Agriculture and Electric Utilities** from 182 to 90 MMTCO2e in 2050

GHG Emissions from Energy used in Residential, Commercial, Industrial, **Agriculture and Electric Utilities**


MMTCO2e

Can we further reduce Regional GHG Emissions from energy sector?

- Some Options
 - 1. If power system can continue to decarbonize at the same rate as 2035-2041 then emissions from power sector can be reduced by 30 MMTCO2e by 2050.
 - 2. Incorporating H2 into the supply mix lowers GHG emissions in 2050 by 14 MMTCO2e. Increasing efficiency of H2 production. post 2041 will further reduce emissions.
 - 3. Test different combination of strategies- by more aggressive conversion strategies and front-loading EE.
 - 4. Direct Carbon Capture and Use applications



Option1- Cleaner Power System (2042-2050) Can Further Reduce Emissions from Energy Sector by over 30 MMTCO2e

Option 2: H2 Production adds 34,000 aMW to Regional Load but by 2050 it can reduce emissions by 13 MMTCO2e

Energy System GHG Emissions (MMTCO2e) Reference, Strategy Combination with and without H2

Do we have enough excess generation/curtailed renewable to meet H2 needs?

Non-Energy Sector Emissions

- These sectors include, all non-energy related processes that emit greenhouse gases.
- Major categories include:
 - Industrial Processes
 - Agricultural and Dairy Processes
 - Waste disposal- solid and waste water processes
- Also included:
 - Emissions from forest fires
 - Emissions from man-made reservoirs
- We track and project emission levels by subsector and gas using EPA/State Inventory Tool Model.

Source of Economy-wide Sources & Sinks

Energy

CO2 from Fossil Fuel Combustion- From Council Models Stationary Combustion (N2O, Ch4 from Council LTM)

Mobile Combustion (from Council LTM)

Coal Mining & Abandoned Mines

Natural Gas and Oil Systems (from Council RNG analysis)

Industrial Processes (from Council LTM)

Agriculture (from SIT model)

Enteric Fermentation

Manure Management

Rice Cultivation

Agricultural Soil Management

Liming

Urea

Burning of Agricultural Crop Waste

Waste (From SIT model)

Municipal Solid Waste

Wastewater

Forest Fire (From council analysis)

Man-made reservoirs (WSU/IPCC)

Sinks

Net Forest Carbon Flux

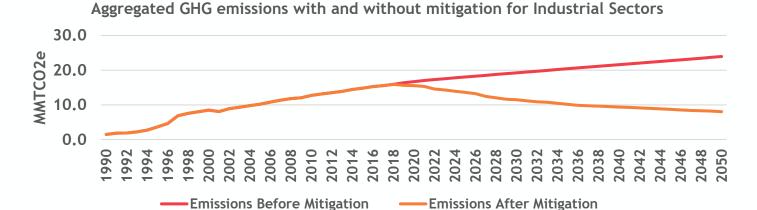
Urban Trees

Landfilled Yard Trimmings and Food Scraps _Agricultural Soil Carbon Flux

Industrial Processes Sources of Emissions

Carbon Dioxide Emissions Cement Manufacture Lime Manufacture Limestone and Dolomite Use Soda Ash Aluminum Production, CO2 Iron & Steel Production Ammonia Production Urea Consumption Nitrous Oxide Emissions Nitric Acid Production Adipic Acid Production HFC, PFC, SF6 and NF3 Emissions ODS Substitutes Semiconductor Manufacturing **Magnesium** Production Electric Power Transmission and Distribution Systems HCFC-22 Production Aluminum Production, PFCs

Industrial Sector is projected to emit 35 MMTCO2e by in 2050. Industrial emissions growing at between 1.3 to 2.3 annually, depending on the industry


Emissions (MMTCO2E)	1990	2022	2041	2050		2022-2050 AAGR
Carbon Dioxide Emissions	3.5	7.3	10.4	12.0	278	1.8%
Cement Manufacturing	0.5	2.6	3.6	4.1	97	1.7%
Iron & Steel Production	0.0	2.9	4.6	5.4	121	2.3%
HFC, PFC, NF3, and SF6						
Emissions	3.9	16.1	22.2	23.0	612	1.3%
ODS Substitutes	0.0	12.1	16.6	16.6	463	1.2%
Semiconductor Manufacturing	0.5	3.4	5.2	6.0	137	2.1%
Total Emissions from all industrial						
sectors	7.4	23.5	32.5	35.0	890	1.5%

ODS: Ozone Depleting Substitutes

Mitigation Strategies for Non-Energy Sectors

• Things we make

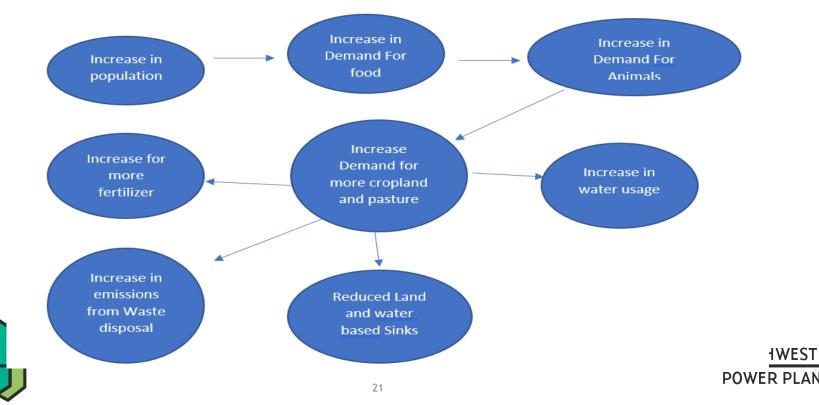
- Cement, (2% annually post 2022)
- Iron & Steel (4% annually post 2022),
- Semiconductor Manufacturing (1% annually post 2022),
- Replacement of Ozone Depleting Substances (4% annually post 2022)

Cumulative Emissions 2022-2050 MMTCO2e	Before Mitigation	After Mitigation	% reduction- By 2050	
Cement	97	59	39%	
Iron and Steel	95	61	36%	
Semiconductors	137	106	22%	
Ozone Depleting Substance Substitutes	249	64	74%	
Lime manufacturing	21	15	25%	
Sum of above	598	305	49 %	

GHG Emissions from Agriculture and Dairy in the NW

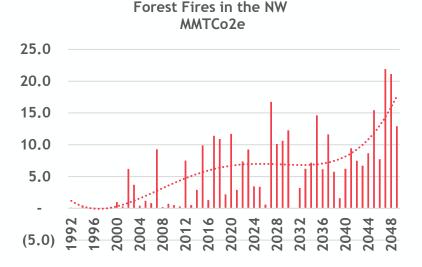
Major categories of GHG emissions from agricultural and Dairy businesses, are CH4 and N2). As population grows, so do emissions. By 2050, over 61 MMTCO2 emissions are expected, absence any mitigation strategies. A growth 75% growth over 1990 levels and 77% growth over 2022.

20.4			2050
20.1	26.5	32.5	37.2
14.2	18.6	24.9	30.3
1.1	3.5	3.6	3.6
-	-	-	-
4.2	3.7	3.1	2.3
0.6	0.8	0.9	0.9
15.4	20.6	22.5	23.3
0.4	0.7	0.7	0.8
14.9	19.9	21.7	22.5
35	47	55	61
	14.2 1.1 - 4.2 0.6 15.4 0.4 14.9	14.2 18.6 1.1 3.5 - - 4.2 3.7 0.6 0.8 15.4 20.6 0.4 0.7 14.9 19.9	14.2 18.6 24.9 1.1 3.5 3.6 - - - 4.2 3.7 3.1 0.6 0.8 0.9 15.4 20.6 22.5 0.4 0.7 0.7 14.9 19.9 21.7


20

Foods We Eat Strategies to Reduce Methane and N20 Emissions

Meat is still what is for dinner, But:


Following Mitigation (1% annual reduction post 2022, 1.5% annually post 2031)

- Increase in Plant-Base Food
- Reduced number of animals
- Reduced lands planted for feed
- Reduced water for irrigation
- Reduced manure/better manure management
 - Increased land and water based sinks Can help reduce GHG emissions

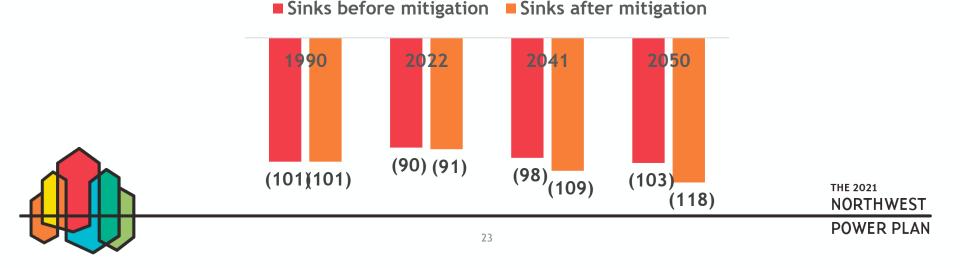
Additional Sources of Emission

- Two additional sources of emissions
 - Forest Fires
 - Man-made reservoirs

Source research for reservoir emission:

Estimate of Release of GHG emissions from

- Forest fire emissions are estimated using econometric relationships. Emission vary based on temperature and precipitation.
- Annual emission from Northwest manmake reservoirs estimated at about 6.5 MMTCO2E/YR.

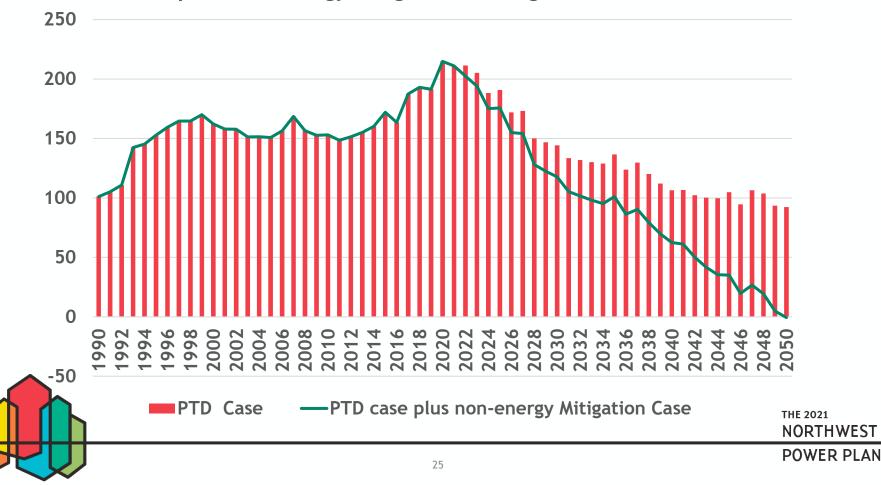


Year-2020 Global Distribution and Pathways of Reservoir Methane and Carbon Dioxide Emissions According to the Greenhouse Gas from Reservoirs (G-res) Model -

John A. Harrison, Yves T. Prairie, Sara Mercier-Blais, and Cynthia Soued

Sinks (Land-Use and Land-Use Change and Forests) are major contributor to reducing GHG emissions

- LULUCF sector is a net "sink" of emissions in the US (e.g., more greenhouse gas emissions are sequestered than emitted from land use activities).
- Although LULUCF in the United States can be considered as a sink for emissions, this sink has declined by 9% since 1990.
- We used default values in EPA SIT model to generate forecast of sinks for the NW.
- We assumed LULUCF mitigation strategies can increase sinks in agricultural land, urban and rural forests. NW Sinks MMTCO2e



Mitigation strategies on Sources and increased sinks, makes is possible to have a negative Net Emission

MMTCO2E	1990	2050 PTD	2050 PTD Case*		
Energy	148	90	63		
Coal Mining & Abandoned Mines	2	0.4	0.4		
Natural Gas and Oil Systems	3	0.3	0.3		
Industrial Processes	7	35	9		
Agriculture	32	41	24		
Municipal Solid Waste	4	2	1		
CH4 From Reserviours	7	6.5	6.5		
Emissions from Foreast fires	-	13	13		
Aggregate Sources	203	189	118		
Aggregate Sinks	(101)	(103)	(118)		
Net Emissions	101	86	(1)		
*- Includes further reduction in emission coefficients in power sector POST 2041					

Pathways to Decarbonize Economy of NW can Produce Negative Emissions

Comparison of Net Emissions in the PTD case and PTD plus Non-Energy Mitigation Strategies MMCO2e

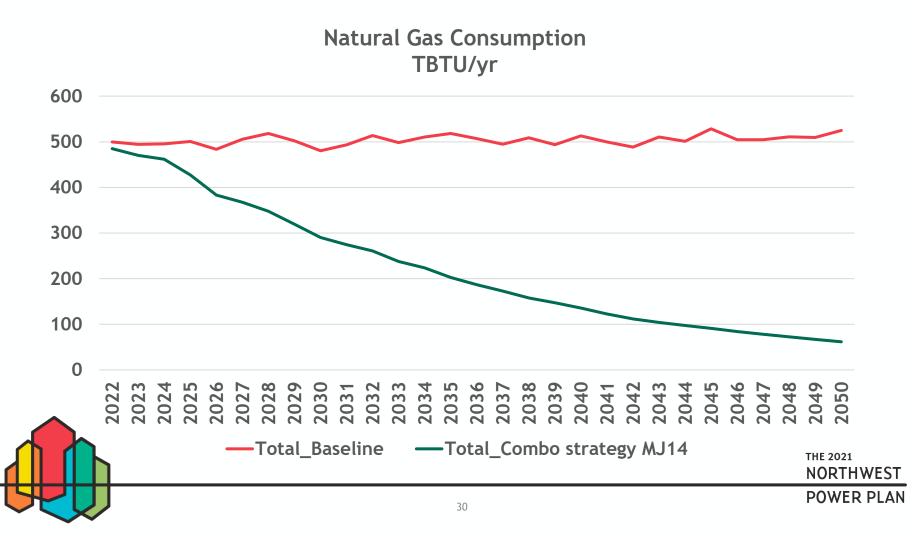
Although it is feasible to reduce GHG emissions in 2050 to less than zero Cumulatively region will be adding between 4 to 2.4 billion metric tons of CO2e to the atmosphere between 2022-2050

Cumulative MMTCO2 Emissions	2022-2050 Billions of Metric Tons CO2e
Baseline/Reference	7
PTD case	4
PTD plus non-energy sources and sinks	2.5

Summary

- Without mitigation strategies, region is projected to emitting over 7 Billion metric tons of GHGs.
- PTD loads increase to 57,000 aMW by 2050, compared to 25,000 in the reference case.
- Power sector alone, even under aggressive set decarbonization strategies cannot reach zero emissions by 2050.
- Improving efficiency of power system post 2042, can lower emissions by 30 MMTCO2e.
- Netting out EE supply curve from loads, did not reduce emissions significantly, because emission coefficients for power system are declining rapidly.
- Adding hydrogen will add load but lowers emissions.
- We tested and incorporate a set non-energy sources and sinks. This allowed testing economy-wide decarbonization strategies of things we make and eat.
- Mitigation strategies in the non-energy sector allowed for major reduction in emissions.
- With mitigation strategies, cumulative GHG emissions are lowered to 4 Billion metric tons.
- Improving agricultural, pastural lands and urban and rural forest help significantly in increasing GHG sink,

NEXT STEPS


- Incorporate feedback from this meeting
- Expand the analysis across economic and climate change scenarios.
- Present current finding to Demand Forecast Advisory Committee, in a near future.
- Complete documentation for PTD scenario.

Questions

Natural Gas Consumption (Excludes Electric Utility Demand)

