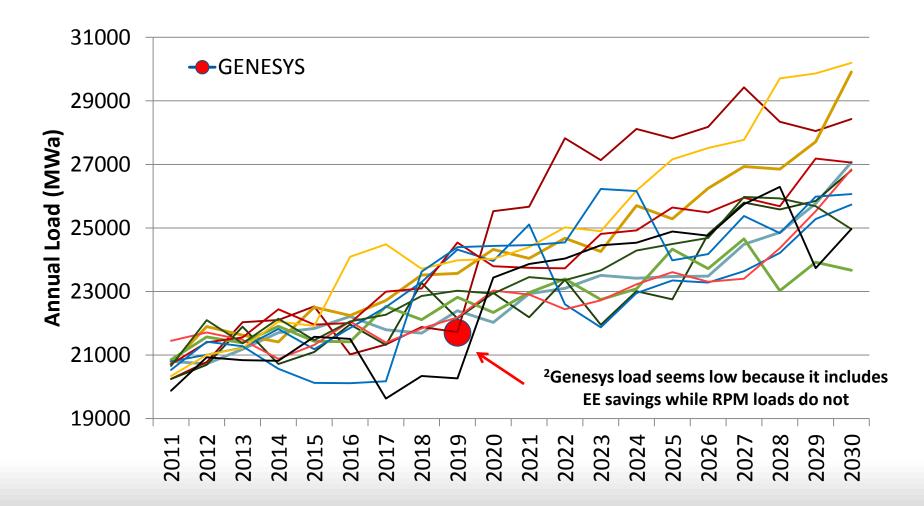

Calculating the Adequacy Reserve Margin (ARM)

SAAC/RAAC Joint Committee Meeting Portland, Oregon April 17, 2015

GENESYS vs. RPM

• <u>GENESYS</u>

- Assesses power supply adequacy for 1 year
- For a specific resource mix
- Hourly time step
- <u>RPM</u>
 - Calculates average cost and tail-end cost
 - For various resource plans over 20 years
 - Quarterly time step



Future Uncertainties Modeled

Uncertainty	GENESYS	RPM
80-Year Hydro	Yes	Yes
Wind variation	Yes, temp correlated	Νο
Solar variation	No	Νο
Thermal Forced Outages	Yes	Yes
Temp variation in load	Yes	Yes
Long-term load growth	Νο	Yes
Fuel prices	No	Yes
Carbon tax	Νο	Yes
Tax credits	No	Yes
Construction costs	Νο	Yes
EE costs	No	Yes

RPM vs. GENESYS Loads^{1,2}

¹Sample of 11 futures out of 750

Adequacy Test in RPM

- Council's standard is 5% maximum LOLP
- Difficult to implement dynamic¹ LOLP calculation into RPM
- Need to translate probabilistic LOLP into deterministic metric that can be used dynamically
- LOLP \implies Adequacy Reserve Margin

¹Means calculating LOLP as the RPM steps through study years.

Adequacy Reserve Margin

- From a GENESYS run that just meets the 5% LOLP standard
- ARM_E (energy) = (quarterly energy quarterly load)/quarterly load
- ARM_c (capacity) = (peak capacity 1-hour load)/1-hour load
- **Resources**: rate-based¹ generation capacity and energy
 - Hydro
 - Energy: FELCC (1937 hydro year generation)
 - Capacity: 10-hour sustained peak capacity for lowest monthly hydro generation
 - Wind
 - Energy: 30% of nameplate
 - Capacity: 5% of nameplate
- Loads: weather-normalized quarterly and 1-hour-peak loads
- Use winter quarter ARM values for the adequacy test

¹Means only "firm" resources.

ARM_C (Capacity)

Resource Type	Adequacy Reserve Calc	Winter Quarter (Q1)
Thermal	Winter Capacity * (1 – FOR)	12,539
Wind	5% Nameplate	227
Hydro	10-hr Sustained Peak	16,490
Firm contracts	1-Hour Peak	-167
Total Resource		29,089
Load	1-Hour (weather normalized)	29,202
ARM Capacity	(Resource - Load)/Load	-0.4%

ARM_E (Energy)

Resource Type	Adequacy Reserve Calc	Winter Quarter (Q1)
Thermal	Winter Cap * (1–FOR) * (1–Maint)	11,608
Wind	30% Nameplate	1360
Hydro	Critical Period (1937)	10,642
Firm contracts	Quarterly Average	-200
Total Resource		23,409
Load	Q Average (weather normalized)	23,518
ARM Energy	(Resource - Load)/Load	-0.5%

Example of How the ARM_C Works (For 1 year in 1 game)

RPM Resource Need Example	Winter Quarter Value (Q1)
RPM Total Rate-based Critical Resource	28,654
RPM Peak Capacity Load	30,485
Implied RPM Adequacy Reserve	(28,654 – 30,485)/ 30,485 = - <mark>6.0%</mark>
GENESYS ARM Capacity Minimum	-0.4%
Conclusion: RPM ARM too low	RPM resources not adequate
Action: RPM needs more resource	
Resource needed = (ARM * Load) + Load	(-0.004 * 30,485) + 30,485 = 30,363
Incremental resource need	30,363 – 28,654 = 1,709 MW

