Floating Offshore Wind Technology

Jeff King Generating Resources Advisory Committee May 28, 2014

nwcouncil.org

Today's Discussion

- Attributes
- Development issues
- PNW resource
- Offshore technology
- Prototypes and projects
- Cost
- Proposed 7th Plan Treatment

Why the interest in floating wind plants?

Attributes

- Energetic resource (higher capacity factor)
- Reduced wind shear (shorter towers)
- Large potentially developable resource area
- Reduced visual and acoustic impact
- WTG scale economies (3 10 MW units)
- Marine WTGs are established commercial technology
- Floating and mooring technology transfer from offshore oil & gas industry
- On-shore fabrication & assembly (assembled unit towed to site)
- Potential interconnection to future offshore PNW<>CA intertie

5

nwcouncil.org

Development issues

- Several platform concepts in conceptual to prototype stages of development, issues include:
 - Stabilization (wind and wave motion)
 - Corrosion & fatigue
- Electrical interconnection
 - Floating substation operation
 - Riser cable fatigue (wind, wave and tidal motion)
 - Distance to shore-side interconnection
- Seaspace conflicts (fishing, navigation, military)
- Ecological impacts (marine & avian)
- Maintenance and repair access
- Probable high capital and O&M costs

Offshore WTG Founding Concepts

TLP – Tension-leg platform

7

nwcouncil.org

Notable Projects

Project	Location	Туре	WTG/Platform	Operation	Status
HyWind	Norway	Prototype	(1) 2.3 MW Siemens, spar	2010 -	Operating
WindPlus	Portugal	Prototype	(1) 2MW Vestas, semi-sub	2011 -	Operating
Fukushima	Japan	Prototype /Pilot	 (1) 2MW Hitachi, semi-sub (1) 7MW Mitsubishi, spar (1) 7MW Mitsubishi, semi- sub 	2013 -	Hitachi unit operating
Kincardine	Scotland	Pilot	(8) Units, semi-sub	2017	Proposed
HyWind2	Maine	Pilot	(4) Units, spar		Suspended
WindFloat Pacific	Oregon	Pilot	(5) 6MW WTG, semi-sub	2017	Proposed

Reported & Projected Capital Cost

Proposed 7th Plan Treatment

In the plan

- Technology & resource description
- (Very!) preliminary cost projections
- Commercialization issues (focus on PNW)
- Action plan (model on OWET actions?)
 - Resource assessment?
 - Site identification?
 - Integration assessment?
 - Possible development incentives?

Selected Literature

- Black & Veatch. (2012) Cost and Performance Data for Power Generation Technologies. Prepared for National Renewable Energy Laboratory (Technology cost & performance estimates).
- National Renewable Energy Laboratory. (2010) Large-scale Offshore Wind Power in the United States
- National Renewable Energy Laboratory. (2012) *Renewable Electricity Futures Study*.
- Navigant. (2013) Offshore Wind Market and Economic Analysis. Prepared for U.S. Dept. of Energy (Economic effects).

