Jeffery C. Allen Chair Idaho **Ed Schriever** Idaho Doug Grob Montana Mike Milburn Montana KC Golden Vice Chair Washington Thomas L (Les) Purce Washington > **Ginny Burdick** Oregon Louie Pitt, Jr. Oregon June 4, 2024 #### MEMORANDUM TO: **Council Members** FROM: Dor Hirsh Bar Gai, Power System Analyst SUBJECT: **GENESYS Enhancements and Early 2029 Adequacy Assessment** Results #### **BACKGROUND:** Presenters: Dor Hirsh Bar Gai, John Ollis Summary: Staff will present summaries of (1) GENESYS modeling enhancements > and assumptions incorporated since 2027 adequacy assessment, and (2) the early resource adequacy assessment results for the 2029 operating year using the Council's multi-metric adequacy approach. The enhancements include improving (1) risk representation of future hydro uncertainty, (2) renewable generation and load forecast error, and (3) WECC-wide representation of resources. For assumptions, staff modified (1) new in-region solar shapes, (2) hydro reserve allocation, (3) thermal start up costs, and (4) deficit interpretation. Early findings from the 2029 assessment indicate that keeping on track with the implementation of the 2021 Power Plan resource strategy including holding 6,000 MW of balancing up reserves – alongside system changes in the region of announced non-retirements of thermal plants and expanded transmission capability, will result in an adequate power supply in 2029, despite forecasted load growth from transportation electrification and data centers. Portland, Oregon 97204-1348 www.nwcouncil.org # GENESYS Enhancements & Early 2029 Adequacy Assessment Results Council Meeting June 11, 2024 Dor Hirsh Bar Gai John Ollis ### Agenda - Review of GENESYS Enhancements & Assumptions - Reminder of Adequacy Assessment - 2029 Market Buildout - 2029 Assessment Scenarios & Results ### **Modeling Updates** #### **Enhancements** Future value of hydro Fine tuned forecast error WECC-wide resources ### **Assumptions** New in-region solar shapes Hydro reserve allocation Thermal Startup costs Interpreting deficits ### **Future Value of Hydro** #### Goal Enhance representation of hydro uncertainty risk to mitigate over optimization #### Status Created functionality to isolate riskinformed hydro inventory allotment #### Fine-Tuned Forecast Error #### Goal Improve representation of forecast error by renewable resource type and load to better capture system risk #### Status - Disaggregated forecast error values for wind, solar, and load - Re-evaluate error parameters as needed towards Plan ### **WECC-wide resources** #### Goal Represent market risk of renewable generation across the WECC (due to forecast error) #### Status Modeled ~2,000 individual renewable resources 2AAC sed Need to evaluate tradeoff of this assumption (run time vs impact) ### **New In-Region Solar Shapes** #### Goal Improve geographic representation of solar in the PNW #### **Status** Created solar capacity factors by Balancing Authority ### Examples of Idaho Power and PGE solar capacity factor comparison ### **Existing Hydro & Thermal System** #### Goal Improve representation of existing hydro and thermal utilization #### Status - Applied limitations on hydro reserve allocation by plant - Incorporated thermal start up costs ### Interpreting Deficits from the Model #### Goal Utilize true-up stage for reporting model deficits and calculating adequacy metrics #### Status Resolved true-up issue #### **U.S. Commitments Reminder** Spill operations in Lower Snake and Lower Columbia updated according to Appendix B of US Commitments Based on follow-up conversations, reviewing and considering improvements we can make to representing these operations, specifically treatment of reserves ### What Are Adequacy Assessments? Testing Plan strategy on bulk power system... over potential risk scenarios to signal... system adequacy ### Objectives for the 2029 Adequacy Assessment - The two primary <u>objectives</u> for this assessment are as follows: - 1. Provide the 2nd look of whether the 2021 Power Plan continues to provide appropriate direction to ensure an adequate system 5-years out - 2. Test utilization of new multi-metric approach for characterizing system adequacy - To facilitate achieving those objectives: - Staff will share modeling results relative to the new metrics - Staff is seeking member discussion on what the results mean relative to the 2021 Power Plan strategy ### **Adequacy Approach** Model shortfall; no emergency resources are in the model Market Renewables Thermal Load THEITHAL Hydro - Adequacy studies simulate the NW power system to meet NW load - In each simulation, representing one year, a simulated model shortfall event occurs over a time period when load cannot be served by resources in the model - However, a shortfall in the model **does not** necessitate an actual curtailment - Rather, it signals non-modeled emergency measures are necessary to avoid curtailment: Type 1: Within utility control - High operating cost resources not in utility's active portfolio - High-priced market purchases over max import limits - Load buy-back provisions - Industry backup generators #### Type 2: Extraordinary measures - Official's call for conservation - Reduce less essential public load (e.g., gov't buildings, streetlights, etc.) - Utility emergency load reduction protocols - Curtail F&W hydro operations - Adequacy metrics evaluate shortfalls to inform risk of using emergency measures #### The Metrics and Thresholds Protection against frequent deficits Protection against tail-end (extreme) deficits **LOLEV** Duration VaR 97.5 Peak VaR 97.5 Energy VaR 97.5 0.1 in summer0.1 in winter+ report annual 8-hour 1,200 MW + report NVaR 9,600 MW + report NVaR ### Out of Region Market Buildout Update Initial adequacy results are informed by market fundamentals per outside the region market resources with buildout from AURORA - 1. Resource buildout challenges (modified timeline and enhancement expectations) - 2. Recommend draft buildout to inform adequacy assessment results ### Resource Buildout Challenges - AURORA Issues completing buildout. - Currently working with Energy Exemplar debugging Possible draft market buildout could be improved but deemed reasonable by the RAAC for the assessment. ### Overview of Input Assumption Change Status #### **Already Implemented Inputs** - Updated to 2023-2024 vintage out of region load forecast - Updated gas prices to December 2023 Council Fuel Price forecast #### **Draft Input Information** - Updated new resource costs to reflect IRA provisions (mostly ITC/PTC changes) - Updated zonal transfer to reflect updated limits for pricing run (not for buildout) - Updated new resource information to include Long Duration Energy Storage (LDES) - Per SAAC suggestion, updated timing on Proxy Clean resource availability from 2035 to 2030 #### Yet to be Implemented Updates (On Hold waiting for an AURORA fix) - Existing resources (still 2022 update vintage) - Any modification of IRA interpretation - Additional planned increases in transmission capability ## Solar, Solar Plus Storage, Battery, LDES and Pumped Storage WECC Build Comparisons (installed capacity in megawatts) | Year | Draft 2024
Baseline | 2022
Baseline | 2021 Plan
Baseline | |--------------|------------------------|------------------|-----------------------| | 2025 | 2,153 | 21,528 | 51,538 | | 2030 | 14,355 | 42,206 | 89,838 | | 2035 | 15,355 | 45,141 | 100,357 | | 2040 | 17,355 | 56,494 | 135,054 | | 2045 | 19,200 | 75,890 | 147,554 | | Year | Draft | 2022 | 2021 Plan | | | 2024
Baseline | Baseline | Baseline | | 2025 | | 23,386 | 46,600 | | 2025
2030 | Baseline | | | | | Baseline
0 | 23,386 | 46,600 | | 2030 | 0
2,261 | 23,386
60,503 | 46,600
86,600 | | Year | Draft 2024
Baseline | 2022
Baseline | 2021 Plan
Baseline | |------|------------------------|------------------|-----------------------| | 2025 | 27,813 | 13,634 | 6,004 | | 2030 | 35,875 | 13,940 | 6,004 | | 2035 | 46,903 | 13,965 | 6,004 | | 2040 | 104,016 | 14,861 | 6,004 | | 2045 | 129,751 | 18,390 | 6,055 | | Year | Draft 2024
Baseline | 2022
Baseline | 2021 Plan
Baseline | | 2025 | 0 | 0 | 0 | | 2030 | 1,300 | 0 | 4,900 | | 2035 | 1,300 | 2,200 | 5,650 | | 2040 | 2,840 | 2,200 | 6,050 | | 2045 | | | 9,690 | | Year | Draft 2024
Baseline | |------|------------------------| | 2025 | 0 | | 2030 | 5,913 | | 2035 | 17,943 | | 2040 | 34,321 | | 2045 | 46,214 | #### Wind, Gas, Offshore Wind and Proxy Clean Build Comparisons WECC (installed capacity in megawatts) | Year | Draft 2024
Baseline | 2022
Baseline | 2021 Plan
Baseline | |--------------|---|-------------------------------------|---| | 2025 | 2,211 | 12,155 | 16,775 | | 2030 | 16,031 | 18,634 | 35,175 | | 2035 | 16,031 | 27,906 | 37,063 | | 2040 | 30,222 | 38,221 | 43,657 | | 2045 | 36,887 | 69,769 | 51,481 | | | | | - , - | | Year | Draft 2024
Baseline | 2022
Baseline | 2021 Plan
Baseline | | Year 2025 | Draft 2024 | 2022 | 2021 Plan | | | Draft 2024
Baseline | 2022
Baseline | 2021 Plan
Baseline | | 2025 | Draft 2024
Baseline
4,523 | 2022
Baseline
7,305 | 2021 Plan
Baseline
11,351 | | 2025
2030 | Draft 2024
Baseline
4,523
11,403 | 2022
Baseline
7,305
14,332 | 2021 Plan
Baseline
11,351
14,873 | | Year | Draft 2024
Baseline | 2022
Baseline | 2021 Plan
Baseline | |-----------|------------------------------------|------------------|---------------------------------| | 2025 | 0 | 0 | 0 | | 2030 | 0 | 0 | 6,463 | | 2035 | 0 | 0 | 7,663 | | 2040 | 10,000 | 0 | 10,000 | | 2045 | 10,000 | 0 | 10,000 | | | , | | | | Year | Draft 2024
Baseline | 2022
Baseline | 2021 Plan
Baseline | | Year 2025 | Draft 2024 | | 2021 Plan | | | Draft 2024
Baseline | Baseline | 2021 Plan
Baseline | | 2025 | Draft 2024
Baseline | Baseline
0 | 2021
Plan
Baseline | | 2025 2030 | Draft 2024
Baseline
0
684 | 0
1,368 | 2021 Plan
Baseline
0
0 | ### Draft Buildout in 2029 Outside the Region - Canada - Other than Site C in BC, all builds are in Alberta - 6 GW of solar, 15.6 GW of wind, 3.4 GW of natural gas - California - 17 GW of 4-hour storage and 1.8 GW of LDES - Desert Southwest (NV, AZ, NM) - 450 MW of solar, 470 MW of natural gas, 5.7 GW of 4-hour storage, 900 MW of LDES - Baja - 2.3 GW of natural gas, 1.5 GW of 4-hour storage, 200 MW LDES - Mountain West (UT, CO, WY) - 1.1 GW of solar, 2.4 GW of gas, 6.9 GW of storage #### **Observations** - More storage resources than energy resources added in early years. - Further modifications to IRA implementation may cause larger VER build early but unclear - Some coal to gas plant conversions seems to be deferring the needs for builds to maintain planning reserve margins and reducing early need for new gas build - The buildout will likely change for the market study, but likely to be larger outside the region. A larger buildout would likely only improve adequacy results, so we recommend moving forward with this buildout for the 2029 assessment to stick to the timeline. ### 2021 Power Plan Resource Strategy reminder #### Existing System: Increase Reserves To reduce regional needs and support integration of renewables, the region needs to double the assumed reserves. This can most cost-effectively be done through more conservative operation of the existing system (both thermal and hydro units). #### Renewables: At least 3,500 MW by 2027 Renewables are recommended due to their low costs, interruptibility, and carbon reduction benefits. Long-term build out will impact the transmission system and should be done mindful of the cumulative impacts of the new resources. #### Energy Efficiency: 750-1,000 aMW by 2027 Significantly less acquisition than prior plan due being less cost-competitive, a slower build resource, not inherently dispatchable, and sensitive to market prices. Efficiency that supports system flexibility is most valuable. #### Demand Response: Low-Cost Capacity Highest value products are those that can be regularly deployed at a low-cost and with minimal to no impact on customer. The Council identified demand voltage regulation and time of use rates as two products, estimating 720 MW of potential. ### The 2029 Resource Strategy – the Reference Our goal for this assessment was to assume the same trajectory of the strategy used in the reference case for the 2027 Adequacy Assessment | Portfolio | 2029 Adequacy Assessment | 2027 Adequacy Assessment | |------------|--------------------------|--------------------------| | Renewables | 6,600 MW | 5,900 MW | | EE | 1,300 aMW | 1,000 aMW | | DR | 720 MW | 720 MW | | Reserves | 6,000 MW | 6,000 MW | ### 2021 Plan Buildout Trajectories Not shown here: Early coal retirement, with limits on gas, and the deep decarbonization scenario resulted in the highest builds (~36 GW in 2041) ### Other System Changes Across all Studies - Announced changes to several thermal plants not retiring (~1,480 MW) - Valmy 1 & 2 (138.6 & 134 MW) - Bridger 1 & 2 (~1,200 MW) - Currently modeled same as before → possible new modeling as gas conversion when new information will be available - Expanded transmission capacity - 12,700 MW of added transmission capacity - Only 1,000 MW in region (B2H) | Planned
Transmission | New
Capacity
(MW) | Path | Online
Date | GENESYS
Buses | Existing
Today
(MW) | New 2029
capacity
(MW) | |-------------------------|-------------------------|----------------------------|----------------|---------------------------|---------------------------|------------------------------| | Ten West Link | 3,200 | SCE to APS | 2024 | So_Cal to
Arizona | 1,400 | 4,600 | | SunZia | 3,000 | PNM to APS | 2026 | New Mexico
to Arizona | 1,700 | 4,700 | | Transwest | 3,000 | WAPA Wyoming
to PACE UT | 2027 | wapa RM to
PAC_UT | 650 | 3,650 | | Express | 1,500 | PACE UT to Nev
South | 2027 | PAC_Ut to
Neveda South | 250 | 1,750 | | SWIP North | 1,000 | IP to North
Nevada | 2027 | IP to north
Nevada | 350 185 | 1,350 1,185 | | В2Н | 1,000 | IP to BPA_OR | 2026 | IP to BPA_OR | 2,000 | 3,000 | #### **Potential Scenarios** Reference Developed, simulated, analyzing, discussing today - Higher data center load (in region) - In-region gas supply limitations - Earlier availability of transmission (reconductoring in region) Pushed to 9th Plan - Delayed availability of transmission and emerging tech in WECC - Emission pricing - Alternative Trajectories within Resource Strategies In progress #### **Incremental Load Differences in 2029** | | EE Savings
aMW | EV Loads
aMW | Data Center Loads
aMW | |--------------------------------|-------------------|-----------------|--------------------------| | 2029 Reference
scenario | 1,300 | 1,048 | 2,386 | | 2029 High Data Center scenario | 1,300 | 1,048 | 3,976 | # Consideration of Alternative Trajectories within the Resource Strategy Two alternative trajectories depending on results of the Reference study Testing the low end of the cost-effective range of EE ~1,000 aMW of EE by 2029, instead of the 1,300 aMW tested in the reference case - Testing ~12,000 MW of renewables in 2029 instead of 6,600 MW - Planned renewable buildout for 2029 is 11,907 MW (within 2021 Power Plan range) ### **Draft Results** 4 event-years 2.2% LOLP 24 event-years 13.3% LOLP #### Adequate Non-Adequate | | Metric | Threshold | Reference | High Data Center | |--------------------------------|-------------------|-----------|-----------|------------------| | Fraguency | Winter LOLEV | 0.1 | 0.022 | 1.294 | | Frequency | Summer LOLEV | 0.1 | 0.017 | 0.3 | | Duration | Duration VaR 97.5 | 8 | 0 | 20.6 | | Magnitudo | Peak VaR 97.5 | 1,200 | 0 | 3,076 | | Magnitude | Energy VaR 97.5 | 9,600 | 0 | 196,324 | | | Annual LOLEV | 0.1 | 0.05 | 1.644 | | Reported metrics (non-binding) | Peak NVaR 97.5 | ~3%* | 0 | 9% | | (Hon-binding) | Energy NVaR 97.5 | ~0.0052%* | 0 | 0.09% | #### **LOLEV** #### Total events: 9 events 296 events | Metric | Months | Threshold | Reference | High Data Center | |--------------|---------|-----------|-----------|------------------| | Winter LOLEV | Dec-Feb | 0.1 | 0.022 | 1.294 | | Summer LOLEV | Jun-Aug | 0.1 | 0.017 | 0.3 | | Annual LOLEV | All | 0.1 | 0.05 | 1.644 | | Spring LOLEV | Mar-May | 0.1? | 0.011 | 0.039 | | Fall LOLEV | Sep-Nov | 0.1? | 0.000 | 0.011 | #### Food for thought: as discussed, relying on winter and summer without an annual perspective overlooks potential spring and fall deficits. ### **Quick Reminder on Climate Studies** Study Simulations = 180 years \rightarrow 60 for each climate scenario \rightarrow 10 water-load years * 6 regional wind profiles In other words: 10 water-load combinations that repeat 6 times, once for each different regional wind profile | Scenario | Winter Hydro
Generation | Summer Hydro
Generation | Winter HDDs | Summer CDDs | |------------|----------------------------|----------------------------|-------------|-------------| | CanESM (A) | | low | low | high | | CCSM (C) | high | low | | | | CNRM (G) | low | high | high | low | High loads and low water conditions might cause adequacy events ### **Simulation Scenario Cipher** ### **Events in Reference Scenario** Maximum event duration and peak | _event_index | Sim_Scenario | Sim_scenario_event
index | Month | Day | event
duration
(hour) | event_max e
(MW) | event_sum
(MWh) | |--------------|--------------|------------------------------|-------|-----|------------------------------|---------------------|--------------------| | 1 | A_40 | 1 | 7 | 13 | 1 | 525 | 525 | | 2 | C_31 | 1 | 3 | 30 | 1 | 46 | 46 | | 3 | G_5 | 1 | 7 | 18 | 1 | 27 | 27 | | 4 | G_33 | 1 | 1 | 17 | 4 | 960 | 3,368 | | 5 | G_33 | 2 | 1 | 18 | 1 | 589 | 589 | | 6 | G_33 | 3 | 1 | 19 | 1 | 844 | 844 | | 7 | G_33 | 4 | 1 | 19 | 1 | 899 | 899 | | 8 | G_33 | 5 | 5 | 27 | 1 | 359 | 359 | | 9 | G_33 | 6 | 7 | 23 | 1 | 222 | 222 | Maximum annual energy 6,281 MWh # Major Shortfall Events in High DC Scenario | | event_index | Sim_Scenario | Sim_scenario_
event_index | Month | Day | event_
duration
(hour) | event_
max
(MW) | event_
sum
(MWh) | Max
energy
rank | |--------------------|-------------|--------------|------------------------------|-------|-----|------------------------------|-----------------------|------------------------|-----------------------| | Longest | 286 | G_53 | 7 | 1 | 16 | 119 | 1,096 | 105,349 | 1st | | Duration
Events | 265 | G_43 | 3 | 1 | 16 | 48 | 1,096 | 46,151 | | | 2701105 | 242 | G_33 | 4 | 1 | 16 | 45 | 1,096 | 41,667 | | | Highest | 191 | A_56 | 14 | 12 | 27 | 19 | 8,863 | 61,763 | 2nd | | Peak
Events | 192 | A_56 | 15 | 12 | 28 | 9 | 8,407 | 38,898 | | | LVCIICS | 189 | A_56 | 12 | 12 | 26 | 17 | 6,688 | 61,604 | 3rd | ### **Events in High Data Center** Scenario A: More events (226), greater peaks and energy Scenario G: Longest events, single greatest energy deficit | | | Event Duration | | Event | Event Peak | | ent Energy | |----------|-----------------|----------------|-----|---------|------------|---------|------------| | Scenario | Event frequency | Average | Max | Average | Max | Average | Max | | A_16 | 25 | 6.4 | 18 | 1,796 | 6,117 | 10,414 | 51,440 | | A_26 | 51 | 4.0 | 16 | 1,193 | 4,392 | 5,017 | 32,118 | | A_29 | 1 | 1.0 | 1 | 38 | 38 | 38 | 38 | | A_31 | 1 | 1.0 | 1 | 93 | 93 | 93 | 93 | | A_36 | 45 | 3.9 | 22 | 1,576 | 6,440 | 6,147 | 51,200 | | A_37 | 1 | 1.0 | 1 | 455 | 455 | 455 | 455 | | A_48 | 2 | 1.0 | 1 | 496 | 788 | 496 | 788 | | A_56 | 48 | 4.9 | 19 | 2,164 | 8,863 | 9,198 | 61,763 | | A_6 | 51 | 5.0 | 22 | 1,234 | 5,500 | 5,787 | 38,044 | | A_60 | 1 | 1.0 | 1 | 454 | 454 | 454 | 454 | | C_12 | 1 | 1.0 | 1 | 1,217 | 1,217 | 1,217 | 1,217 | | C_19 | 1 | 1.0 | 1 | 199 | 199 | 199 | 199 | | C_34 | 2 | 1.0 | 1 |
289 | 296 | 289 | 296 | | C_56 | 4 | 1.5 | 3 | 270 | 537 | 537 | 1,606 | | G_16 | 1 | 2.0 | 2 | 551 | 551 | 1,101 | 1,101 | | G_33 | 23 | 5.8 | 45 | 730 | 1,096 | 4,544 | 41,667 | | G_40 | 1 | 2.0 | 2 | 436 | 436 | 804 | 804 | | G_43 | 14 | 9.4 | 48 | 826 | 1,096 | 7,312 | 46,151 | | G_48 | 2 | 1.5 | 2 | 1,209 | 1,621 | 1,417 | 1,621 | | G_49 | 1 | 1.0 | 1 | 331 | 331 | 331 _ | 331 | | G_53 | 15 | 10.5 | 119 | 698 | 1,096 | 8,702 | 105,349 | | G_55 | 1 | 1.0 | 1 | 34 | 34 | 34 | 34 | | G_60 | 1 | 1.0 | 1 | 351 | 351 | 351 | 351 | | G_8 | 3 | 1.0 | 11 | 200 | 485 | 200 | 485 | G challenging years - 33, 43, and 53 ### High Data Center Monthly Events More summer and winter challenges | Scenario | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Dec | |----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | A_16 | 13 | 1 | | | | | | 5 | | 6 | | A_26 | 11 | 8 | | | | 1 | | 8 | | 23 | | A_29 | | | | 1 | | | | | | | | A_31 | i | | | | 1 | | | | | | | A_36 | 13 | 12 | | | | | 1 | 12 | | 7 | | A_37 | i | | | | | | | 1 | | | | A_48 | | | | | | | | 1 | 1 | | | A_56 | 22 | 6 | | | 1 | | | 4 | | 15 | | A_6 | 16 | 11 | | | | | | 8 | | 16 | | A_60 | | | | | | | 1 | | | | | C_12 | | | 1 | | | | | | | | | C_19 | | | | | 1 | | | | | | | C_34 | ! | | | | | 1 | 1 | | | | | C_56 | | | | | | 4 | | | | | | G_16 | ! | | | | | 1 | | | | | | G_33 | 23 | | | | | | | | | | | G_40 | | | | | | | 1 | | | | | G_43 | 14 | | | | | | | | | | | G_48 | 1 | | | | | | | 1 | | | | G_49 | | | | | | | | | 1 | | | G_53 | 15 | | | | | | | | | | | G_55 | | | | | | | 1 | | | | | G_60 | i | | | | | | | 1 | | | | G_8 | | | 1 | | 1 | | | 1 | | | ### **Discussion Points** - The studies encompass a wide range of hydro, load, and renewable generation profile combinations. - The risk of low wind generation is captured across a variety of hydro and load conditions → and poses adequacy challenges in limited scenarios #### Reference Case - Limited adequacy risk associated with one scenario (G_33) having normal winter hydro generation coupled with high loads and low wind generation - However, similar hydro and load conditions had no adequacy issues across other wind generation profiles (G_3, 13, 23, 43, 53) #### Higher Data Center Load Case - Increased loads caused adequacy issues not present in the Reference with similar hydro & wind conditions (G_43, 53) - However, other similar coupled hydro and wind conditions remain with no adequacy challenges due to increased loads (G_3, 13, 23) - Increased loads worsen winter and summer adequacy challenges across additional climate scenarios (mostly A, a bit in C) not observed in the Reference ### **Overall Finding** - Assuming the reference case is the trajectory: - Continued implementation of the strategy, including ensuring sufficient reserves and acquiring another two years of energy efficiency and renewables, not retiring thermal plants, and expanded transmission capacity offset the adequacy challenge of increased loads of anticipated data centers and EV electrification - If the higher data center case is more likely: - The ~1,600 MW of increased load associated with <u>additional</u> data center load growth above the reference case causes adequacy challenges - The plan is to study the impact and resource strategy associated with increased load uncertainty in the upcoming Power Plan. # Early 2029 Adequacy Assessment Results Winter Event Example # 2029 Adequacy Assessment Reference Case – Scenario 33 Simulated Shortfalls in January # 2029 Adequacy Assessment Reference Case – Scenario 33 Load Resource Balance # 2029 Adequacy Assessment Reference Case – Scenario 33 Market Reliance # 2029 Adequacy Assessment Reference Case – Scenario 33 Market Reliance #### Regional Deficits - Regional Hydro generation - Regional Thermal Generation - Regional Renewable Generation - California Imports - Canadian Imports - Mountain West Imports - Regional Load - Regional Price - California Price - Canadian Price - Mountain West Price - Regional Hydro Generation HA - Regional Thermal Generation HA - Regional Renewable Generation HA - Regional Deficits HA Market prices indicate more market available during the event in SW and Mountain West # 2029 Adequacy Assessment Reference Case – Scenario 33 Simulated Shortfalls # 2029 Adequacy Assessment Reference Case – Scenario 33 Renewable Generation Renewable generation is low during the event but also very low during some of the days leading up to the event. # 2029 Adequacy Assessment Reference Case – Scenario 33 Thermal Generation # 2029 Adequacy Assessment Reference Case – Scenario 33 Hydro Generation # 2029 Adequacy Assessment Renewable Generation Risk During High Load Events #### Reference Case - Scenario 33 had an adequacy issue but low wind generation - Other scenarios that had the same load and hydro but different renewable generation and no adequacy issues. - The market reliance limit is binding leading up to and throughout the event; however, market fundamentals show more availability outside the region ### **2029 Adequacy Assessment Timeline** Kickoff Technical setup Setup results Interim adequacy results Final Adequacy Report Council Meeting Update - April 2, 2024 - Interim Multi-metric thresholds - Scenarios discussion - April 4, 2024 - Region Loads - Existing resources - Review of new hydro operation changes - GENESYS enhancements - Scenario discussion - Early May - Report market scenarios and results - Preliminary exploration of new hydro operations - Preliminary exploration of enhancements and assumptions - May 30, 2024 - Discuss interim adequacy results - Late June - Discuss final adequacy results - Evaluate multimetric framework - July 9-10, 2024 - Report on Assessment - Discuss recommendation for final multi-metric adequacy thresholds ### **Next Steps** - Run and analyze low end of EE in Alternative Trajectories - Prepare final 2029 adequacy assessment report (Late June RAAC) - Including evaluation of multi-metric framework - Present final 2029 adequacy assessment in July Council Meeting 4 event-years 2.2% LOLP 24 event-years 13.3% LOLP # **Questions on Draft Results?** Adequate #### Non-Adequate | | Metric | Threshold | Reference | High Data Center | |------------------|-------------------|-----------|-----------|------------------| | Fraguency | Winter LOLEV | 0.1 | 0.022 | 1.294 | | Frequency | Summer LOLEV | 0.1 | 0.017 | 0.3 | | Duration | Duration VaR 97.5 | 8 | 0 | 20.6 | | Magnitudo | Peak VaR 97.5 | 1,200 | 0 | 3,076 | | Magnitude | Energy VaR 97.5 | 9,600 | 0 | 196,324 | | | Annual LOLEV | 0.1 | 0.05 | 1.644 | | Reported metrics | Peak NVaR 97.5 | ~3%* | 0 | 9% | | (non-binding) | Energy NVaR 97.5 | ~0.0052%* | 0 | 0.09% | ### **Questions?** Dor Hirsh Bar Gai dhirshbargai@nwcouncil.org John Ollis jollis@nwcouncil.org # Data center & chip fab forecasts Higher case forecast, trends accelerate, closer to utility projections Reference case forecast, based on current trends continuing 8th Plan high case forecast (data center only) # **Duration (Hours)** | Simulation | on Max | |------------|--------| | Duration | Hours: | | ef | High DO | |----|---------| | 4 | 119 | | 1 | 48 | | 1 | 45 | | 1 | 22 | | • | 22 | | | | | Metric | Threshold | Reference | High Data Center | |-------------------|-----------|-----------|------------------| | Duration VaR 97.5 | 8 | 0 | 20.6 | | Max | | 4 | 119 | # Peak (MW) | imulation Max | | |---------------|--| | Peak MW: | | | | | | ef | High DC | |-----|---------| | 960 | 8,863 | | 525 | 6,440 | | 46 | 6,117 | | 27 | 5 500 | | Metric | Threshold | Reference | High Data Center | |---------------|-----------|-----------|------------------| | Peak VaR 97.5 | 1,200 | 0 | 3,076 | | Max | | 960 | 8,863 | # Energy (MWh) | imulation Max
Energy MWh: | | | | | | |------------------------------|--|--|--|--|--| Metric | Threshold | Reference | High Data Center | |-----------------|-----------|-----------|------------------| | Energy VaR 97.5 | 9,600 | 0 | 196,324 | | Max | | 6,281 | 441,491 | High DC 6,281 525 46 441,491 295,138 276,632 260,354 255,857 130,525 104,506 102,367 2,835 2,149 1,217 1,101 However, if data center load growth will be in the higher range of the forecast, the region will have insufficient resources to maintain adequacy signaling the importance of analyzing such futures in the 9th Power Plan. Staff will work with the Power Committee to finalize the 2029 Adequacy Assessment, including testing an additional scenario to evaluate the adequacy risk if the low end of the energy efficiency target outlined in the 2021 Power Plan is achieved instead. Relevance: Continuously enhancing modeling and assumptions is key for Council analysis. These new enhancements and assumptions improve the analytical capabilities to better represent system operations and dynamics. > Resource adequacy is a critical component of the Council's mandate to develop a regional power plan that "ensures an adequate, efficient, economic and reliable power supply." To test the efficacy of the plan's resource strategy, the Council – in cooperation with regional stakeholders - annually assesses the adequacy of the power supply with planned resource additions. The annual assessment is based on a multi-metric adequacy approach to categorize the risk of frequency, duration, and magnitude of events that is currently under evaluation by the Council since 2022 and approved in 2023, evolving past the resource adequacy standard of Loss of Load Probability (LOLP) metric used since 2011. Workplan: B.1.3 Continued Enhancement of GENESYS operations to support periodic studies and next power plan. A.2.4 Conduct the regional Adequacy Assessment and prepare report detailing the analysis and findings. Background: An adequate power supply can meet the electric energy requirements of its customers within acceptable limits, considering a reasonable range of uncertainty in resource
availability and in demand. Resource uncertainty includes forced outages, early retirements and variations in hydro, wind, solar and market supplies. Demand uncertainty includes variations due to temperature, economic conditions, and other factors. Resource availability and demand are also affected by environmental policies, such as those aimed at reducing greenhouse gas emissions. > In January 2023 the Council approved a transition towards a multi-metric adequacy approach with the completion of the 2027 Adequacy Assessment to 1) prevent overly frequent use of emergency measures, (2) limit the risk of long duration shortfall events, (3) limit the risk of big capacity shortfalls, and (4) limit the risk of big energy shortfalls. Frequency, duration, and magnitude metrics are used in combination of expected and tail-end event statistics, known as value at risk (VaR). #### **Agenda** - Review of GENESYS Enhancements & Assumptions - Reminder of Adequacy Assessment - 2029 Market Buildout - 2029 Assessment Scenarios & Results 2 #### **Modeling Updates** #### **Enhancements** Future value of hydro Fine tuned forecast error WECC-wide resources #### **Assumptions** New in-region solar shapes Hydro reserve allocation Thermal Startup costs Interpreting deficits 4 / #### **U.S. Commitments Reminder** Spill operations in Lower Snake and Lower Columbia updated according to Appendix B of US Commitments Based on follow-up conversations, reviewing and considering improvements we can make to representing these operations, specifically treatment of reserves 11 11 #### **Objectives for the 2029 Adequacy Assessment** - The two primary <u>objectives</u> for this assessment are as follows: - 1. Provide the 2nd look of whether the 2021 Power Plan continues to provide appropriate direction to ensure an adequate system 5-years out - Test utilization of new multi-metric approach for characterizing system adequacy To facilitate achieving those objectives: - Staff will share modeling results relative to the new metrics - Staff is seeking member discussion on what the results mean relative to the 2021 Power Plan strategy #### Model shortfall; **Adequacy Approach** no emergency resources are in the model Adequacy studies simulate the NW power system to meet NW load Load • In each simulation, representing one year, a simulated model shortfall event occurs over a time period when load cannot be served by resources in the model • However, a shortfall in the model does not necessitate an actual curtailment Rather, it signals non-modeled emergency measures are necessary to avoid curtailment: Type 2: Extraordinary measures Type 1: Within utility control · Official's call for conservation · High operating cost resources not in utility's active portfolio Reduce less essential public load (e.g., gov't buildings, · High-priced market purchases over max import limits streetlights, etc.) · Load buy-back provisions Utility emergency load reduction protocols · Industry backup generators · Curtail F&W hydro operations Adequacy metrics evaluate shortfalls to inform risk of using emergency measures Northwest **Power** and **Conservation** Council The Metrics and Thresholds Protection against frequent deficits Protection against tail-end (extreme) deficits A Control of the LOLEV Duration VaR 97.5 Peak VaR 97.5 Energy VaR 97.5 0.1 in summer 8-hour 1,200 MW 9,600 MW 0.1 in winter + report NVaR + report annual + report annual 16 16 ### **Out of Region Market Buildout Update** Initial adequacy results are informed by market fundamentals per outside the region market resources with buildout from AURORA - 1. Resource buildout challenges (modified timeline and enhancement expectations) - 2. Recommend draft buildout to inform adequacy assessment results 18 ### **Resource Buildout Challenges** - AURORA Issues completing buildout. - Currently working with Energy Exemplar debugging - Possible draft market buildout could be improved but deemed reasonable by the RAAC for the assessment. 19 10 #### **Overview of Input Assumption Change Status** #### **Already Implemented Inputs** - Updated to 2023-2024 vintage out of region load forecast - Updated gas prices to December 2023 Council Fuel Price forecast #### **Draft Input Information** - Updated new resource costs to reflect IRA provisions (mostly ITC/PTC changes) - Updated zonal transfer to reflect updated limits for pricing run (not for buildout) - Updated new resource information to include Long Duration Energy Storage (LDES) - Per SAAC suggestion, updated timing on Proxy Clean resource availability from 2035 to 2030 #### Yet to be Implemented Updates (On Hold waiting for an AURORA fix) - Existing resources (still 2022 update vintage) - Any modification of IRA interpretation - Additional planned increases in transmission capability 20 # Solar, Solar Plus Storage, Battery, LDES and Pumped Storage Build Comparisons (installed capacity in megawatts) | Year | Draft 2024
Baseline | 2022
Baseline | 2021 Plan
Baseline | |------|---------------------------|------------------|-----------------------| | 2025 | 2,153 | 21,528 | 51,538 | | 2030 | 14,355 | 42,206 | 89,838 | | 2035 | 15,355 | 45,141 | 100,357 | | 2040 | 17,355 | 56,494 | 135,054 | | 2045 | 19,200 | 75,890 | 147,554 | | Year | Draft
2024
Baseline | 2022
Baseline | 2021 Plan
Baseline | | 2025 | 0 | 23,386 | 46,600 | | 2030 | 2,261 | 60,503 | 86,600 | | 2035 | 5,301 | 60,503 | 145,500 | | | | | | | 2040 | 20,156 | 63,429 | 179,800 | | Year | Draft 2024
Baseline | 2022
Baseline | 2021 Plan
Baseline | |----------------------|------------------------|--------------------|-----------------------| | 2025 | 27,813 | 13,634 | 6,004 | | 2030 | 35,875 | 13,940 | 6,004 | | 2035 | 46,903 | 13,965 | 6,004 | | 2040 | 104,016 | 14,861 | 6,004 | | 2045 | 129,751 | 18,390 | 6,055 | | | | | | | Year | Draft 2024
Baseline | 2022
Baseline | 2021 Plan
Baseline | | Year 2025 | | | | | | Baseline | Baseline | Baseline | | 2025 | Baseline
0 | Baseline
0 | Baseline
0 | | 2025
2030 | 0
1,300 | Baseline 0 0 | 0
4,900 | | 2025
2030
2035 | 0
1,300
1,300 | Baseline 0 0 2,200 | 0
4,900
5,650 | | Year | Draft 2024
Baseline | |------|------------------------| | 2025 | 0 | | 2030 | 5,913 | | 2035 | 17,943 | | 2040 | 34,321 | | 2045 | 46,214 | | | | 21 # Wind, Gas, Offshore Wind and Proxy Clean Build Comparisons (installed capacity in megawatts) | Year | Draft 2024
Baseline | 2022
Baseline | 2021 Plan
Baseline | |--------------|------------------------|------------------|-----------------------| | 2025 | 2,211 | 12,155 | 16,775 | | 2030 | 16,031 | 18,634 | 35,175 | | 2035 | 16,031 | 27,906 | 37,063 | | 2040 | 30,222 | 38,221 | 43,657 | | 2045 | 36,887 | 69,769 | 51,481 | | | | | | | Year | Draft 2024
Baseline | 2022
Baseline | 2021 Plan
Baseline | | Year 2025 | | | | | | Baseline | Baseline | Baseline | | 2025 | Baseline
4,523 | Baseline 7,305 | Baseline
11,351 | | 2025
2030 | 4,523
11,403 | 7,305
14,332 | 11,351
14,873 | | Year | Baseline | Baseline | Baseline | |--------------|------------------------|------------------|-----------------------| | 2025 | 0 | 0 | 0 | | 2030 | 0 | 0 | 6,463 | | 2035 | 0 | 0 | 7,663 | | 2040 | 10,000 | 0 | 10,000 | | 2045 | 10,000 | 0 | 10,000 | | | | | | | Year | Draft 2024
Baseline | 2022
Baseline | 2021 Plan
Baseline | | Year 2025 | | | | | | Baseline | Baseline | Baseline | | 2025 | Baseline
0 | Baseline
0 | Baseline
0 | | 2025
2030 | 0
684 | 0
1,368 | Baseline
0
0 | ## **Draft Buildout in 2029 Outside the Region** - Canada - Other than Site C in BC, all builds are in Alberta - 6 GW of solar, 15.6 GW of wind, 3.4 GW of natural gas - California - 17 GW of 4-hour storage and 1.8 GW of LDES - Desert Southwest (NV, AZ, NM) - 450 MW of solar, 470 MW of natural gas, 5.7 GW of 4-hour storage, 900 MW of LDES - Baja - 2.3 GW of natural gas, 1.5 GW of 4-hour storage, 200 MW LDES - Mountain West (UT, CO, WY) - 1.1 GW of solar, 2.4 GW of gas, 6.9 GW of storage 23 23 #### **Observations** - More storage resources than energy resources added in early years. - Further modifications to IRA implementation may cause larger VER build early but unclear - Some coal to gas plant conversions seems to be deferring the needs for builds to maintain planning reserve margins and reducing early need for new gas build - The buildout will likely change for the market study, but likely to be larger outside the region. A larger buildout would likely only improve adequacy results, so we recommend moving forward with this buildout for the 2029 assessment to stick to the timeline. Existing System: Increase Reserves To reduce regional needs and support integration of renewables, the region needs to double the assumed reserves. This can most cost-effectively be done through more conservative operation of the existing system (both thermal and hydro units). Renewables: At least 3,500 MW by 2027 Renewables are recommended due to their low costs, interruptibility, and carbon reduction benefits. Long-term build out will impact the transmission system and should be done mindful of the cumulative impacts of the new resources. Energy Efficiency: 750-1,000 aMW by 2027 Significantly less acquisition than prior plan due being less cost-competitive, a slower build resource, not inherently dispatchable, and sensitive to market prices. Efficiency that supports system flexibility is most valuable. Demand Response: Low-Cost Capacity Highest value products are those that can be regularly deployed at a low-cost and with minimal to no impact on customer. The Council identified demand voltage regulation and time of use rates as two products, estimating 720 MW of potential. 26 ## The 2029 Resource Strategy – the Reference Our goal for this assessment was to assume the same trajectory of the strategy used in the reference case for the 2027 Adequacy Assessment | Portfolio | 2029
Adequacy Assessment | 2027 Adequacy Assessment | |------------|--------------------------|--------------------------| | Renewables | 6,600 MW | 5,900 MW | | EE | 1,300 aMW | 1,000 aMW | | DR | 720 MW | 720 MW | | Reserves | 6,000 MW | 6,000 MW | 27 27 ## **Other System Changes Across all Studies** - Announced changes to several thermal plants not retiring (~1,480 MW) - Valmy 1 & 2 (138.6 & 134 MW) - Bridger 1 & 2 (~1,200 MW) - Currently modeled same as before → possible new modeling as gas conversion when new information will be available - Expanded transmission capacity - 12,700 MW of added transmission capacity - Only 1,000 MW in region (B2H) | Planned
Transmission | New
Capacity
(MW) | Path | Online
Date | GENESYS
Buses | Existing
Today
(MW) | New 2029
capacity
(MW) | |-------------------------|-------------------------|----------------------------|----------------|---------------------------|---------------------------|------------------------------| | Ten West Link | 3,200 | SCE to APS | 2024 | So_Cal to
Arizona | 1,400 | 4,600 | | SunZia | 3,000 | PNM to APS | 2026 | New Mexico
to Arizona | 1,700 | 4,700 | | Transwest | 3,000 | WAPA Wyoming
to PACE UT | 2027 | wapa RM to
PAC_UT | 650 | 3,650 | | Express | 1,500 | PACE UT to Nev
South | 2027 | PAC_Ut to
Neveda South | 250 | 1,750 | | SWIP North | 1,000 | IP to North
Nevada | 2027 | IP to north
Nevada | 350 185 | 1,350 1,18 | | № B2H | 1,000 | IP to BPA_OR | 2026 | IP to BPA_OR | 2,000 | 3,000 | 29 29 #### **Potential Scenarios** Reference Developed, simulated, analyzing, discussing today - Higher data center load (in region) - In-region gas supply limitations - Earlier availability of transmission (reconductoring in region) Pushed to 9th Plan - Delayed availability of transmission and emerging tech in WECC - Emission pricing - Alternative Trajectories within Resource Strategies In progress 30 ### **Incremental Load Differences in 2029** | | EE Savings
aMW | EV Loads
aMW | Data Center Loads
aMW | |--------------------------------|-------------------|-----------------|--------------------------| | 2029 Reference
scenario | 1,300 | 1,048 | 2,386 | | 2029 High Data Center scenario | 1,300 | 1,048 | 3,976 | Northwest **Power** and **Conservation** Council 31 31 ## **Consideration of Alternative Trajectories within the Resource Strategy** Two alternative trajectories depending on results of the Reference study Testing the low end of the cost-effective range of EE ~1,000 aMW of EE by 2029, instead of the 1,300 aMW tested in the reference case Testing ~12,000 MW of renewables in 2029 instead of 6,600 MW Planned renewable buildout for 2029 is 11,907 MW (within 2021 Power Plan range) 3 Low end of EE | Draft Results | | | 4 event-years
2.2% LOLP
Adequate | 24 event-years
13.3% LOLP
Non-Adequate | |---------------------------------------|-------------------|---------------|--|--| | | Metric | Threshold | Reference | High Data Center | | | Winter LOLEV | 0.1 | 0.022 | 1.294 | | Frequency | Summer LOLEV | 0.1 | 0.017 | 0.3 | | Duration | Duration VaR 97.5 | 8 | 0 | 20.6 | | Maraituda | Peak VaR 97.5 | 1,200 | 0 | 3,076 | | Magnitude | Energy VaR 97.5 | 9,600 | 0 | 196,324 | | | Annual LOLEV | 0.1 | 0.05 | 1.644 | | Reported metrics | Peak NVaR 97.5 | ~3%* | 0 | 9% | | (non-binding) | Energy NVaR 97.5 | ~0.0052%* | 0 | 0.09% | | est Power and
ation Council | | * Approximate | 0 | 0.09% | #### **LOLEV** Total events: 9 events 296 events Metric **Threshold** Reference **High Data Center** Months Winter LOLEV Dec-Feb 0.1 0.022 1.294 **Summer LOLEV** Jun-Aug 0.1 0.017 0.3 All 0.1 0.05 1.644 **Annual LOLEV** Mar-May 0.1? Spring LOLEV 0.011 0.039 Sep-Nov 0.1? Fall LOLEV 0.000 0.011 Food for thought: as discussed, relying on winter and summer without an annual perspective overlooks potential spring and fall deficits. Northwest **Power** and **Conservation** Council ## **Quick Reminder on Climate Studies** Study Simulations = 180 years \rightarrow 60 for each climate scenario \rightarrow 10 water-load years * 6 regional wind profiles In other words: 10 water-load combinations that repeat 6 times, once for each different regional wind profile | Scenario | Winter Hydro
Generation | Summer Hydro
Generation | Winter HDDs | Summer CDDs | |------------|----------------------------|----------------------------|-------------|-------------| | CanESM (A) | | low | low | high | | CCSM (C) | high | low | | | | CNRM (G) | low | high | high | low | High loads and low water conditions might cause adequacy events 35 35 | • | | | | | 7710071111 | Maximum event
duration and peak | | | |-------------|----------|--------------------------|-------|-----|------------------------------|------------------------------------|--------------------|--| | event_index | Scenario | scenario_event
index | Month | Day | event
duration
(hour) | event_max
(MW) | event_sur
(MWh) | | | 1 | A_40 | 1 | 7 | 13 | 1 | 525 | 525 | | | 2 | C_31 | 1 | 3 | 30 | 1 | 46 | 46 | | | 3 | G_5 | 1 | 7 | 18 | 1 | 27 | 27 | | | 4 | G_33 | 1 | 1 | 17 | 4 | 960 | 3,368 | | | 5 | G_33 | 2 | 1 | 18 | 1 | 589 | 589 | | | 6 | G_33 | 3 | 1 | 19 | 1 | 844 | 844 | | | 7 | G_33 | 4 | 1 | 19 | 1 | 899 | 899 | | | 8 | G_33 | 5 | 5 | 27 | 1 | 359 | 359 | | | 9 | G_33 | 6 | 7 | 23 | 1 | 222 | _222 | | ## **Major Shortfall Events in High DC Scenario** | | event_index | Scenario | scenario_
event_index | Month | Day | event_
duration
(hour) | event_
max
(MW) | event_
sum
(MWh) | Max
energy
rank | |--------------------|-------------|----------|--------------------------|-------|-----|------------------------------|-----------------------|------------------------|-----------------------| | Longest | 286 | G_53 | 7 | 1 | 16 | 119 | 1,096 | 105,349 | 1st | | Duration
Events | 265 | G_43 | 3 | 1 | 16 | 48 | 1,096 | 46,151 | | | LVCIICS | 242 | G_33 | 4 | 1 | 16 | 45 | 1,096 | 41,667 | | | Highest | 191 | A_56 | 14 | 12 | 27 | 19 | 8,863 | 61,763 | 2nd | | Peak
Events | 192 | A_56 | 15 | 12 | 28 | 9 | 8,407 | 38,898 | | | LVCIICS | 189 | A_56 | 12 | 12 | 26 | 17 | 6,688 | 61,604 | 3rd | | ve | ents in | High Dat | a Cen | More events (226), greater peaks and energy | | Longest events, single greatest energy defici | | | |----|-------------------------|-----------------|----------------|---|---------|---|-----------------|---------| | - | i | | Event Duration | | | Event Peak | | Energy | | | Scenario | Event frequency | Average | Max | Average | Max | Average | Max | | | A_16 | 25 | 6.4 | 18 | 1,796 | 6,117 | 10,414 | 51,440 | | | A_26 | 51 | 4.0 | 16 | 1,193 | 4,392 | 5,017 | 32,118 | | | A_29 | 1 | 1.0 | 1 | 38 | 38 | 38 | 38 | | | A_31 | 1 | 1.0 | 1 | 93 | 93 | 93 | 93 | | | A_36 | 45 | 3.9 | 22 | 1,576 | 6,440 | 6,147 | 51,200 | | | A_37 | 1 | 1.0 | 1 | 455 | 455 | 455 | 455 | | | A_48 | 2 | 1.0 | 1 | 496 | 788 | 496 | 788 | | | A_56 | 48 | 4.9 | 19 | 2,164 | 8,863 | 9,198 | 61,763 | | | A_6 | 51 | 5.0 | 22 | 1,234 | 5,500 | 5,787 | 38,044 | | | A_60 | 1 | 1.0 | 1 | 454 | 454 | 454 | 454 | | | C_12 | 1 | 1.0 | 1 | 1,217 | 1,217 | 1,217 | 1,217 | | | C_19 | 1 | 1.0 | 1 | 199 | 199 | 199 | 199 | | | C_34 | 2 | 1.0 | 1 | 289 | 296 | 289 | 296 | | | C_56 | 4 | 1.5 | 3 | 270 | 537 | 537 | 1,606 | | | G_16 | 1 | 2.0 | 2 | 551 | 551 | 1,101 | 1,101 | | | G_33 | 23 | 5.8 | 45 | 730 | 1,096 | 4,544 | 41,667 | | | G_40 | 1 | 2.0 | 2 | 436 | 436 | 804 | 804 | | | G_43 | 14 | 9.4 | 48 | 826 | 1,096 | 7,312 | 46,151 | | | G_48 | 2 | 1.5 | 2 | 1,209 | 1,621 | 1,417 | 1,621 | | | G_49 | 1 | 1.0 | 1 | 331 | 331 | 331 | 331 | | | G_53 | 15 | 10.5 | 119 | 698 | 1,096 | 8,702 | 105,349 | | | G_55 | 1 | 1.0 | 1 | 34 | 34 | 34 | 34 | | | G_60 | 1 | 1.0 | 1 | 351 | 351 | 351 | 351 | | | G_8 | 3 | 1.0 | 1 | 200 | 485 | 200 | 485 | | | | | | | G | challenging yea | ırs - 33, 43, a | nd 53 | | | thwest Power and | | | | | | | | | High Data | Scenario | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Dec | |--|--------------|----------|--------|-----|-----|-----|-----|-----|--------|-----|---------| | Center | A_16
A_26 | 13
11 | 1
8 | | | | 1 | | 5
8 | | 6
23 | | | A_29 | | Ŭ | | 1 | | ¦ ' | | ŭ | | | | Monthly | A_31 | | | | | 1 | | | | | 1 | | Events | A_36 | 13 | 12 | | | | į | 1 | 12 | | 7 | | Evelita | A_37 | | | | | | ¦ | | 1 | | l | | | A_48 | | | | | | ! | | 1 | 1 | | | | A_56 | 22 | 6 | | | 1 | i | | 4 | | 15 | | More summer | A_6
A_60 | 16 | 11 | | | | ! | 1 | 8 | | 16 | | and winter | C_12 | | | 1 | | | | | | | | | challenges | C_12 | | | | | 1 | | | | | i | | _ | C_34 | | | | | · | 1 | 1 | | | ! | | | C_56 | | | | | | 4 | | | į. | į | | | G_16 | | | | | | 1 | | | | ŀ | | | G_33 | 23 | | | | | ! | | | | ! | | | G_40 | | | | | | | 1 | | | į . | | | G_43 | 14 | | | | | ! | | | | ! | | | G_48
G_49 | 1 | | | | | į | | 1 | 1 | į | | | G_49
G_53 | 15 | | | | | | | | ' | i | | | G_55 | 13 | | | | | ! | 1 | | | ! | | | G_60 | | | | | | į | | 1 | į. | į | | | G_8 | | | 1 | | 1 | L | | 1 | | l | | | | | | | | | | | | | | | Northwest Power and Conservation Council | | | | | | | | | | | | #### **Discussion Points** - Assuming the reference case is the trajectory: - Another two years of energy efficiency and renewables, not retiring thermal plants, and expanded transmission capacity offset the adequacy challenge of increased loads of anticipated data centers and EV electrification - If the higher data center case is more likely: - The ~1,600 MW of increased load associated with <u>additional</u> data center load growth above the reference case causes adequacy challenges - The plan is to study the impact and resource strategy associated with increased load
uncertainty in the upcoming Power Plan. 40 Northwest **Power** and **Conservation** Council # 2029 Adequacy Assessment Renewable Generation Risk During High Load Events #### Reference Case - Scenario 33 had an adequacy issue but low wind generation - Scenarios 3, 13, 23, 43, 53 all had the same load and hydro but different renewable generation and no adequacy issues. #### Higher DC Load Case - G Scenario 33, 43 and 53 had an adequacy issues - Scenarios 3, 13, 23 all had the same load and hydro but different renewable generation and no adequacy issues. 50 #### **Next Steps** - Run and analyze low end of EE in Alternative Trajectories - Prepare final 2029 adequacy assessment report (Late June RAAC) Including evaluation of multi-metric framework - Present final 2029 adequacy assessment in July Council Meeting 53 53 #### 4 event-years 24 event-years 2.2% LOLP 13.3% LOLP **Questions on Draft Results?**Adequate Non-Adequate Metric Threshold Reference **High Data Center** Winter LOLEV 0.1 0.022 1.294 Frequency Summer LOLEV 0.1 0.017 0.3 8 **Duration VaR 97.5** 0 20.6 Duration Peak VaR 97.5 1,200 3,076 0 Magnitude Energy VaR 97.5 9,600 0 196,324 Annual LOLEV 0.1 0.05 1.644 Reported Peak NVaR 97.5 metrics ~3%* 0 9% (non-binding) Energy NVaR 97.5 ~0.0052%* 0 0.09% Northwest **Power** and **Conservation** Council * Approximate ## **Questions?** Dor Hirsh Bar Gai dhirshbargai@nwcouncil.org John Ollis jollis@nwcouncil.org 55 55 | Durat | ion (Hours |) | Simulation Max
Duration Hours: | Ref
4
1
1 | High DC
119
48
45
22
22
19
18
16 | | |--|--------------------------|-----------|-----------------------------------|--------------------|--|----------------------------| | | Metric | Threshold | Reference | High Data Center | - | 3
2
2
2 | | | Duration VaR 97.5
Max | 8 | 0
4 | 20.6
119 | | 1
1
1 | | | , | | | | - | 1
1
1
1
1
1 | | Northwest Power and Conservation Council | | | | | | 58 | | Peak (| MW) | | | Simulation Max
Peak MW: | Ref High I
960 8,863
525 6,440
46 6,117
27 5,500
4,392
1,622
1,217 | |--|---------------|-----------|-----------|----------------------------|---| | | Metric | Threshold | Reference | High Data Center | 1,096
1,096
1,096
788 | | | Peak VaR 97.5 | 1,200 | 0 | 3,076 | 551
537 | | | Max | | 960 | 8,863 | 485
455 | | | | | | | 454
436
351
331
296
199
338
34 | | Northwest Power and Conservation Council | | | | | | | Er | nergy (MW | /h) | Simulation Max
Energy MWh: | Ref High DC
6,281 441,491
525 295,138
46 276,632
27 260,354
255,857
130,525
104,506
102,367 | | |--------------------------|-------------------------|-----------|-------------------------------|---|---| | | Metric | Threshold | Reference | High Data Center | 2,835
2,149
1,217
1,101 | | | Energy VaR 97.5 | 9,600 | 0 | 196,324 | 992
804 | | | Max | | 6,281 | 441,491 | 599
578
455
454
351
331
199 | | | | | | | 38
34 | | Northwest P Conservation | Power and
on Council | | | | 60 |