Density Dependence

A data (and thought) exploration

Brian Burke and Laurie Weitkamp

Density-dependence

(limiting factors that depend on population size)

What exactly depends on density?

- Feeding/Growth

Direct competition for prey resources

- Movement/Behavior/Habitat Use

Physical and behavioral competition for space

- Survival

Predator rates, cannibalism, antagonistic behavior

Why is density-dependence important?

DD reduces growth and impacts size distribution

Size-dependent survival

Size
Can we just look at size distributions to study DD?

Changes in Length Distributions

Real Data: growth and thinning or size-dependent survival?

No, we can't just look at size distributions. We must study the mechanisms.

Methods

- 1,897 stomachs analyzed
- 1,411 hatchery fish (H) and 486 not tagged (W)
- 4 species groups (Chinook sub, Chinook yr, Coho yr, and Steelhead)
- 6 years (2007-2012)
- 2 stations (North Channel and Trestle Bay)
- Between 6 and 10 cruises per year, which included multiple hauls at each of the two stations

Response variable

\% BW (percent body weight) = weight of stomach contents / weight of fish

Model

\% BW ~ salmonDensity * species/LHT * H/W + year + day + station

Beta regression, link="loglog"

What we had when we initially brought this up as a possible Ocean Forum topic

Density varies across many factors (hatcher/wild, year, species, timing)

Subyearling Chinook

Model Results

Summary

- This is not conclusive.
- I was forced to separately account for the effect of year and location because there may be inherent differences in productivity, prey availability, predator density, etc. I wouldn't want to attribute low stomach contents to fish density if it was mainly due to interannual differences in productivity, for example.
- If we had an independent estimate of food availability, we could account for these effects directly.
- Similar effect with differences between hatchery and wild fish. Hatchery fish had less food in their stomachs and were often found in higher densities, but this doesn't necessarily imply a cause and effect relationship - it could also have been due to differences in migration timing. Independent estimates of prey availability at varying levels of abundance would be required to refine this analysis.

