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This chapter provides the biological and ecological basis for recovery planning. The 
problem of diminished fish runs, the recovery planning process, the species of interest, and 
the factors limiting those species, have been described in the preceding chapters and in the 
Technical Appendices. Now, the next step is to lay out the biological basis for establishing 
the subsequent recovery objectives, regional strategies and measures, subbasin restoration 
actions, and an implementation plan. This chapter addresses extinction processes, the 
principles for biological recovery, the salmonid life cycle as an integrating model for 
recovery, the role of science, and the issue of managing uncertainty. 
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4.1 Understanding Extinction and Recovery 
To recover salmon, it is particularly helpful to understand what extinction is and why fish go 

extinct.  Extinction typically refers to the irreversible disappearance of a species, subspecies, or, 
in the case of the Endangered Species Act, a “distinct population segment.”  For Pacific Salmon, 
a distinct population segment has been defined as an evolutionarily significant unit (ESU) 
(Waples 1991).  Salmon ESU’s may contain multiple “demographically independent” 
populations that return to different areas of the ESU (McElhany et al. 2000).  Extinction of an 
ESU occurs when all of the component populations are extinct.  The ESA defines extinction risk 
at two levels: endangered which is to be in danger of  extinction, and threatened which is likley 
to become endangered within the foreseeable future. All listed lower Columbia salmon and 
steelhead ESUs are classified as threatened.     

Extinction results from the interaction of fish population processes and external factors to 
reduce population size to critical low levels that are no longer self-sustaining. Small populations 
are subject to a variety of problems that may preclude recovery, such as inability to find mates, 
skewed sex ratios, increased predation effects, genetic inbreeding, and risks of extinction from 
natural downturns in survival conditions or catastrophes.  Functional extinction typically occurs 
at population sizes greater than zero when numbers fall to critical low levels from which they 
cannot recover.  

A species or ESU that has a 
low risk of extinction is typically 
referred to as viable. Viability is 
also equivalent to having a high 
likelihood of long-term 
persistence.  With relation to the 
definitions in the ESA, a viable 
ESU is one that is not threatened or 
endangered with extinction.  In this 
plan, “recovery” refers to the 
restoration of salmon and steelhead 
status to some level at or above 
viability represented by the gray 
area between Viable and Capacity 
in Figure 1.  

Capacity represents the maximum number of individuals that available habitat and resources 
can support, and is at the opposite end of the spectrum from extinction. Capacity is expressed 
through density-dependent population limits that reduce survival, growth, or reproduction via 
competition or other feedback mechanisms.  Capacity may change as habitat quantity or quality 
increase.  Current capacity of existing habitat conditions can be distinguished from potential 
capacity if conditions were improved. Average abundance may be less than the hypothetical 
habitat capacity as a result of mortality factors.  Populations are typically viable at levels below 
the potential capacity of a system.  Thus, viable species may often be recovered without restoring 
the ecosystem to its hypothetical capacity for salmon and steelhead as represented by pristine, 
historic conditions.  However, a population may not be viable at the existing habitat capacity 
where numbers are constrained by low capacity of a small area with poor quality habitat.  
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Figure 1.  Continuum of abundance levels corresponding to 

potential fish recovery goals. 
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Specific Recovery goals could be defined anywhere within the range between viable and the 
capacity of a fully restored habitat.  Under the ESA, recovery of an ESU might be reached at the 
minimum viability threshold while the recovery vision in this plan of healthy, harvestable 
populations may require improvement to population levels greater than minimum viability.  

4.2 Considering Biological and Social Values 
Science can provide guidelines for the amount of risk that a species may be exposed to (i.e., 

extinction risk) but it is not the only factor in determining a vision for recovery.  The 
development of recovery goals will require decisions by policy makers to balance both biological 
and social values.  The vision may involve a description of an ESU’s abundance and 
productivity, but it will also include choices about human-induced mortality and the cost to 
various sectors of society.  Many combinations of actions could be chosen that would lead to 
recovery.  Yet, the decision on which specific blend of actions to take will have substantial 
social, economic, and cultural costs and benefits. 

The real pitfall occurs when the biological and social tradeoffs implicit in various standards 
are not clearly articulated and/or distinguished.  These pitfalls can lead to unrecognized conflicts 
of interest, especially when social values are represented in purely biological terms.  The line 
between biological and social considerations can sometimes be difficult to distinguish, especially 
because social values can often be expressed in biological terms. For instance, where the 
predominant social value derives from fishery benefits, a biological standard equivalent to 
maximum or optimum sustainable yield might be considered. Where the predominant social 
value derives from water use rather than fishery benefits, a biological standard equivalent to 
minimum population viability might be considered. Where ecological, intrinsic, or cultural fish 
values predominate, a biological standard equivalent to pre-development capacity might be 
considered.  Considerations are also complicated by the broader role of salmon within a complex 
ecosystem. For instance, salmon provide food for wildlife and marine-derived nutrients that 
substantially affect plant and animal productivity, and even subsequent salmon production, in 
many watersheds.  

4.3 Characteristics of Healthy Species 
Fish go extinct when numbers fall to critically low levels from which they cannot recover. 

However, underlying population processes are the ultimate determinants of whether populations 
are viable.  Key population parameters include abundance, productivity, diversity, and spatial 
structure.  Each of these parameters is intimately interrelated.  NOAA fisheries has incorporated 
these parameters into a Viable Salmonid Population (VSP) concept (McElhany et al. 2000) that 
provides useful guidelines for population viability.  A Willamette/lower Columbia Technical 
Recovery Team proposed a series of viability criteria based on VSP guidelines (McElhany et al. 
2003).  These criteria are the basis for the viability recovery objectives described later in this 
plan. 

4.3.1 Abundance 
Abundance refers to the population sizes needed for recovery to levels that will ensure long-

term persistence and viability.  This population size depends on the buffer needed to avoid the 
risks of extinction in the face of normal environmental variation.  Ideally, two determined fish of 
the opposite sex could forestall extinction but in practice, many more are needed to ensure 
population persistence and provide the raw material for recovery.  Although there is little 
agreement on where functional extinction occurs and what population level is viable, NOAA 
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Fisheries generally assumes viability with at least 500 fish to ensure that critically low numbers 
do not result from normal environmental variation.  

Small population sizes are subject to a variety of factors that affect viability (Lande and 
Barrowclough 1987, Nelson and Soulé 1987, Lynch 1996). Small numbers risk genetic 
bottlenecks that reduce diversity. The genetic diversity of salmon populations maximizes 
population persistence and productivity by allowing the salmon to capitalize on a wide range of 
habitats and environmental conditions. Small numbers also increase chances of inbreeding, 
possibly resulting in severe genetic side effects (e.g. expression of deleterious recessive genes). 
Small numbers increase demographic risks where scattered fish are unable to find mates, sex 
ratios are skewed by chance, or numbers are too few to escape predators (Hilborn and Walters 
1992, Courchamp et al. 1999). Small numbers may also increase risks of extinction from natural 
downturns in survival conditions or catastrophes (e.g., poor ocean conditions, volcanoes, floods, 
chemical spills, dam failures,  etc.) (Lawson 1993). 

Reduced productivity at low 
densities is often referred to as 
depensation (also termed “Allee 
effects” or “inverse density 
dependence”) (Figure 2). McElhany 
et al. (2000) noted that depensation 
is a destabilizing influence at very 
low abundance and can result in a 
spiraling slide toward extinction. 
This downward spiral is sometimes 
referred to as an “extinction vortex.” 
The population size that can lead to 
this downward spiral is termed the 
“quasi-extinction” level.  Because it 
is often unclear where this functional 
extinction level occurs, quasi-
extinction is defined as a low 
abundance that does not guarantee 
extinction but from which recovery 
cannot be assured. 

McElhany et al. (2000) identified key characteristics of viable and critical population 
abundance guidelines. Viable population size guidelines are reached when a population is large 
enough to: 1) survive normal environmental variation, 2) allow compensatory processes to 
provide resilience to perturbation, 3) maintain genetic diversity, 4) provide important ecological 
functions, and 5) not risk effects of uncertainty in status evaluations.  Critical population size 
guidelines are reached if a population is low enough to be subject to risks from: 1) depensatory 
processes, 2) genetic effects of inbreeding depression or fixation of deleterious mutations, 3) 
demographic stochasticity, and 4) uncertainty in status evaluations.  

Although biologists generally agree that extinction risks become increasingly acute as 
numbers decrease, there is little agreement on where functional extinction occurs and what 
population level is viable. Various viability and critical population size guidelines have been 
identified based on largely theoretical considerations for genetic and demographic risk. For 
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instance, numbers needed to minimize genetic risks typically range from 30 to several thousand 
individuals based on theoretical models of genetic characteristics, effective spawner population 
sizes, and genetic diversity (Franklin 1980, Soule 1980, Allendorf and Ryman 1987, Lynch 
1990, Waples 1990, Thompson 1991, Gabriel and Burger 1992, IUCN 1994, Lande 1995, NMFS 
1995, Allendorf et al. 1997, McElhany et al. 2000). Thompson (1991) identified a 50/500 “rule 
of thumb” where 50 fish is a short term-effective population size which limits inbreeding and 
500 is a long-term effective population size which maintains genetic variability. Recent viability 
analyses by NOAA Fisheries generally assume a 50-fish quasi-extinction threshold and produce 
minimum population viability levels of at least 500 fish to ensure that critically low numbers do 
not result from normal variation associated with environmental variation (McElhany et al. 2003). 
Uncertainties in actual minimum viable population sizes will require definition of recovery 
standards that incorporate appropriate safety factors. 

4.3.2 Productivity 
Productivity refers to a populations’ ability to replace itself and reflects a populations’ 

ability to rebound from a low level to the equilibrium population level.  Productivity can also be 
defined in terms of intrinsic population growth rate independent of density dependent population 
regulating mechanisms.  Highly productive populations produce larger numbers of juveniles or 
recruits per parent and can more readily rebound from low levels following perturbation. Less 
productive populations produce smaller numbers of offspring or recruits per parent and rebound 
more slowly or not at all.  Highly productive populations generally sustain larger average 
numbers then unproductive populations.  Productivity is directly related to density independent 
mortality or survival rates.  Greater mortality rates (and lower survival rates) will proportionately 
reduce population productivity. 

Extinction risks depend on the combination of abundance and productivity.  While species 
go extinct when numbers fall to critical low levels, productivity is the engine that regulates risks 
associated with low numbers.  Risks might be much less for a highly productive population even 
at low spawning escapements than for a larger population where productivity is low.  Species can 
be predisposed to extinction by low population sizes that reduce population productivity and 
resilience well before extinction actually occurs.  Cumulative effects of periodic poor spawning 
escapements may increase chances of future extinction even where numbers temporarily rebound 
(in good ocean years for instance) (Lawson 1993). 

Productivity guidelines for viability are reached when a population’s productivity is such 
that: 1) abundance can be maintained above the viable level, 2) viability is independent of 
hatchery subsidy, 3) viability is maintained even during extended sequences of poor 
environmental conditions, 4) declines in abundance are not sustained, 5) life history traits are not 
in flux, and 6) conclusions are independent of uncertainty in parameter estimates (McElhany et 
al. 2000).  

4.3.3 Diversity 
Diversity refers to individual and population variability in life history, behavior, and 

physiology. Diversity traits include some that are completely genetically based and others that 
vary as a result of a combination of genetic and environmental factors. Diversity is related to 
population viability because it allows a species to use a wider array of environments, protects 
species against short-term spatial and temporal changes in the environment, and provides the raw 
material for surviving long-term environmental changes (McElhany et al. 2000).  Correlations 
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between diversity and population productivity have been observed in many populations (NRC 
1996).  In general, greater diversity, productivity, abundance, distribution, and viability all go 
hand in hand. 

Once lost, the unique features of each population may be gone forever. Preservation of 
unique groups of salmon populations is a central tenet in the development of recovery standards. 
Salmon populations are often organized into groups for various management purposes. 
Populations within a species that have similar life histories are often referred to as “races” (e.g. 
winter steelhead, spring chinook, early run “tule” fall chinook). Populations within races that are 
grouped together for harvest management purposes are referred to as “stocks”. When salmon, 
steelhead or trout species are listed as threatened or endangered under the ESA, populations 
within a region are grouped into ESUs, which are the organizational groups to which recovery 
standards are applied. 

Each salmon species is comprised of many related but different populations, each of which 
is specifically adapted to the unique local conditions of their natal watersheds and the other 
habitats they experience during their migratory life.  Local adaptations have been naturally 
selected over hundreds of generations to optimize success under the prevailing conditions.  Local 
populations are typically more productive in their native watersheds than populations introduced 
from other areas.  Salmon that stray or are transplanted among widely separated watersheds do 
not fare as well as the native stock.  Thus, a population of wild coho salmon from the lower 
Columbia River cannot be replaced with wild coho salmon transplanted from Puget Sound.  
Differences among populations in adjacent watersheds may be small where habitat conditions are 
similar but differences typically increase with distance (Riddell 1993).  

Adaptations may be expressed in a variety of forms such as run timing that returns adults to 
streams exactly when spawning conditions are optimal or that allows smolts to arrive at the 
estuary during the critical physiological window for transition from fresh to salt water. Local 
adaptation is made possible by the homing of salmon across thousands of miles of ocean and 
river to spawn in the same river or stream where they were born. Recent studies have shown that 
homing may be so exact that many salmon even spawn in the same river bend or riffle where 
they originated. Local adaptation and homing go hand in hand to give each salmon the best 
chance for reproductive success by returning to the exact conditions to which they are best 
suited. The degree of difference among populations can often, but not always, be identified by 
genetic analysis. 

According to McElhany et al. (2000), diversity guidelines for viable salmonid populations 
are reached when: 1) variation in life history, morphological, and genetic traits is maintained, 2) 
natural dispersal processes are maintained, 3) ecological variation is maintained, and 4) effects of 
uncertainty are considered. 

4.3.4 Spatial Structure 
Spatial structure refers to the amount of habitat available, the organization and connectivity 

of habitat patches, and the relatedness and exchange rates of adjacent populations. Large habitat 
patches or a connected series of smaller patches are generally associated with a wider species 
distribution and increased population viability.   

Spatial structure of a population is closely related to habitat quantity and quality.  Salmonids 
typically use habitat patches of variable quality and salmon distribution may ebb and flow in 
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response to normal environmental variation.  In years of high ocean survival and high numbers, 
distribution may expand as fish fill the optimum habitats and spread out into other areas of 
suitable habitat.  In years of low ocean survival and low numbers, distribution may contract into 
areas of high quality habitat.  Marginal habitats may support fish under good ocean survival 
conditions but are not productive enough to sustain numbers under poor ocean survival 
conditions. 

Spatial structure guidelines for viability are reached when: 1) the number of habitat patches 
is stable or increasing; 2) stray rates are stable; 3) marginally suitable habitat patches are 
preserved; 4) refuge source populations are preserved, and 5) uncertainty is taken into account 
(McElhany et al. 2000).   The spatial distribution and productive capacity of freshwater, 
estuarine, and marine habitats should be maintained sufficiently to support viable populations. 
The diversity of habitats for recovered populations should resemble historic conditions given 
expected natural disturbance regimes (e.g. wildfire, flood, volcanic eruptions, etc.). Historic 
conditions represent a reasonable template for a viable population; the closer the habitat 
resembles the historic diversity, the greater the confidence in its ability to support viable 
populations. At a large scale, habitats should be protected and restored, with a trend toward an 
appropriate range of attributes for salmonid viability.  

4.4 Natural Populations Spawning Naturally 
Recovery ultimately depends on naturally-produced fish reproducing naturally.  Natural 

habitats and wild populations are the only demonstrated alternative for guaranteeing long term 
sustainability.  This biological fact is unchanged regardless of how current hatchery 
controversies play out or how NOAA classifies the significance of hatchery salmon stocks in 
salmon recovery.  By both design and happenstance, fish produced in hatcheries sometimes 
spawn in the wild with naturally-produced fish.  Numbers and effects of naturally-spawning 
hatchery fish vary widely among species and populations depending on hatchery proximity and 
practices.  Some natural spawning populations include large fractions of hatchery fish. Other 
populations are largely free of hatchery influence.   In the lower Columbia River, most tule fall 
chinook and coho have been heavily hatchery influenced, spring chinook populations rely on 
hatchery production, steelhead have been variously affected, and chum, bright fall chinook, and 
bull trout are largely free of hatchery effects. 

Effects of natural spawning by hatchery fish have been extremely controversial (see 
Hatchery Section in Chapter 3). One issue has been the potential for reduced fitness and viability 
of some wild populations as a result of the introduction of domesticated or non-local hatchery 
fish that are ill-suited to local conditions. A second issue is the difficulty of accurately measuring 
numbers and productivity of wild populations where hatchery influence is significant.   It can be 
especially difficult to distinguish situations where hatchery contributions to natural spawning 
reduce wild population productivity because of fitness effects or supplement wild population 
productivity because of high hatchery survival rates. The significance of each of these effects is 
in dispute but hatcheries clearly pose risks to population viability under certain situations. 

Populations maintained through a continuing influx of hatchery fish are not sustainable if 
they might become extinct whenever the hatchery subsidy is removed.  No hatchery has 
demonstrated the ability to preserve a full spectrum of wild population diversity and life history 
traits in the long term over multiple generations.  This is not to say that hatcheries are incapable 
of long-term sustainability, but merely that significant uncertainty exists.  Hatchery subsidies of 
wild populations also mask true status and can lead to a reduced imperative for protection and 
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restoration of habitats critical to natural production.  Gradual erosion of adaptive population 
diversity in the hatchery and coincident declines in natural population productivity are a formula 
for species extinction over the long term.  Hatcheries depend on a continuing commitment of 
funding and other resources which places the long term viability of a hatchery-supported stock at 
the whims of political processes and competing funding priorities. 

Hatcheries also provide significant fish population benefits in some circumstances and will 
be a critical tool for preservation, reintroduction, and supplementation over the short term.  Many 
remnants of many lower Columbia River salmon currently exist only in hatcheries.  Conservation 
values include preserving genetic stocks where habitat is gone, reintroducing fish in areas where 
habitat has been restored, and bolstering survival to offset survival bottlenecks.   

This plan recognizes that current conditions and constraints on habitat restoration in some 
areas will require recovery using a combination of natural only and natural/hatchery populations.  
Hatcheries will continue to be operated for both conservation and fishery enhancement purposes 
and hatchery fish will continue to spawn naturally in some watersheds.  Some populations will 
consist entirely of naturally-produced fish segregated from significant hatchery influences.  
Other populations will include natural and hatchery-produced fish from carefully integrated 
hatchery programs.  Hatchery programs will need to be shaped to minimize risks while taking 
advantage of very real benefits. Integrated hatchery programs will be particularly important for 
preservation, reintroduction, and supplementation in the interim period until habitats that can 
sustain viable natural populations are restored.  NOAA Fisheries hatchery policies will provide 
guidance on the role specific hatchery stocks may play in salmon recovery. 

Hatcheries will continue to serve both production enhancement and fisheries enhancement 
purposes for the foreseeable future.  Even after viable ESUs of salmon are recovered, hatcheries 
will be needed to provide fish for fisheries as mitigation for permanent loss of habitat and 
hydrosystem mortality.  Fish populations in some areas will continue to include significant 
numbers of hatchery fish.  It will not be necessary to exclude hatchery fish from every 
population in order to meet ESU recovery goals or to demonstrate individual population 
viability.  Not every population needs to be restored to a high level of viability for ESU recovery.  
Viable populations capable of being naturally self-sustaining can also be restored in selected 
areas even when hatchery fish spawn in the wild.  Natural fish population accounting practices 
will need to make the necessary adjustments to accurately represent the wild component 
independent of significant hatchery fish effects, thus providing an accurate assessment of the 
ability of the habitat conditions to support wild populations. 

4.5 In-basin and Out-of-basin Influences 
Effective recovery planning must consider in-basin and out-of-basin influences that affect 

salmon throughout their life cycle.  Salmon numbers and population dynamics are affected by 
the interaction of a wide variety of human and natural factors operating over the salmon’s far 
flung migration from freshwater streams, through the mainstem Columbia River and estuary, into 
the far reaches of the North Pacific ocean, and back again.  Failure to consider all factors 
affecting the life cycle can overlook key limitations or changes in one area that potentially offset 
gains in other areas.  For instance, it would be of little benefit to improve tributary habitat 
conditions and productivity if gains there were offset by increased mortality in the mainstem, 
estuary, and ocean.  Conversely, improvements in multiple areas can provide compounding 
benefits over the course of the life cycle.  For instance, benefits of tributary habitat 
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improvements are enhanced where downstream improvements also improve survival such that 
the full effects of tributary improvements may be realized. 

A comprehensive analysis of all factors limiting recovery helps ensure equitability in 
balancing the costs of salmon recovery among different stakeholders.  Different combinations of 
stakeholders affect salmon in different areas.  Without a systematic treatment for weighing 
impacts, discussions of site and action-specific recovery actions are easily confounded by 
counterproductive finger-pointing.  

A fish life cycle focus provides a systematic means of effectively relating fish-specific 
recovery goals to factors limiting recovery and potential restoration actions (Figure 3). A life 
cycle focus identifies life stage-specific numbers, birth rates, and death rates that describe the 
biological processes regulating fish status. Stage-specific numbers and rates provide a consistent 
way to estimate fish effects from the impacts of a variety of stage-, time-, and area-specific 
factors that limit recovery. In addition, a life cycle approach provides the means of distinguishing 
wild and hatchery fish and explicitly evaluating the effects of their interactions. Finally, a life 
cycle focus incorporates the abundance and productivity elements of the NOAA Fisheries VSP 
approach. 
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Figure 3.   The basic salmonid life cycle, indicating how habitat, including dams, fishing, and hatcheries 

impinge on survival at various stages, and how this integrated process affects the viability and 
surplus production of the populations. 
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4.6 Ocean and Climate Variability 
The comprehensive treatment of factors limiting fish recovery also warrants careful 

consideration of other influences that are beyond our control.  These include environmental 
conditions such as ocean and climate cycles that can cause dramatic variation in natural mortality 
rates. The effects of human-caused mortality and restoration measures must be considered in the 
context of these significant and highly variable survival rates.  

Large fluctuations in salmon numbers during the last few years have highlighted the 
importance of ocean conditions in regulating salmon survival, productivity, and abundance. 
Twenty years ago fish scientists generally regarded the ocean as a vast and consistently 
productive environment for salmonids. However, frequent El Niño circulation patterns over the 
last 20 years have demonstrated that environmental conditions are much more dynamic than 
previously thought. Ocean conditions are not randomly sorted – poor years tend to occur in 
groups as do good years. Transitions between good and poor regimes occur unpredictably and 
are obvious only in hindsight. Low salmon survival during El Niño years results in population 
declines and critically low numbers. Abnormally good salmon survival in cool, wet years 
following large El Niños results in temporary population increases and record returns like those 
seen in 2001–03.  

Periodic poor ocean cycles are the stressor that bottoms out populations compromised by 
habitat degradation and overuse (Lawson 1993).  Downturns challenge the persistence and health 
of impaired salmon populations and can precipitate irreversible consequences where fish have 
been heavily impacted by human-induced factors.  Healthy populations are able to ride out the 
periodic declines without lingering effects.  Large numbers, high inherent productivity, high 
diversity, wide distribution all help sustain viable populations in the face of normal 
environmental variability.   

Recovery planning analyses must consider variable ocean conditions as an uncontrollable 
backdrop to the effects of human activities on salmon. Ocean conditions have always varied and 
always will. Just because salmon numbers decline during poor survival periods should not mean 
fish are threatened or endangered with extinction. Alternatively, high numbers returning in good 
ocean years does not mean that threatened or endangered fish are recovered.  Recent large 
salmon runs suggest that we may have entered a period of better-than-average ocean survival 
conditions. Rather than relaxing the need for salmon recovery, this pattern provides an 
opportunity to implement substantive changes for population rebuilding needed to withstand the 
next down cycle. Habitat and demographic improvements require time to become effective and 
may come too late if the next period of decline is the one from which the population cannot 
recover.  

4.7 Linking Actions to Limiting Factors and Threats 
Species declines can be attributed to certain limiting factors and threats once they have been 

identified.  Recovery actions can then be developed based on those limiting factors and threats.  
Once the factors that a species’ decline have been adequately mitigated, it is likely that the 
species will recover.   

Factors and threats include a wide spectrum of human-induced mortality factors that affect 
fish throughout their life cycles. These factors are sometimes referred to as the ‘4 Hs’ 
(hatcheries, harvest, hydropower, and habitat), but also include ecological changes like predation 
and competition from introduced species.  The ‘4-H’ label oversimplifies the complex of direct 
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and indirect relationships and the relative impacts of the different factors that affect fish.  
However, reference to this convenient characterization highlights the need to treat all factors 
limiting recovery in a similar and comprehensive fashion.  Effective recovery planning must 
equitably address all human-induced mortality factors that limit fish status and have contributed 
to fish declines.  This plan describes how harvest, hatchery, hydropower, habitat and ecological 
factors have influenced key fish species in the past, their current impacts, the anticipated 
trajectory of these influences, and actions to reduce corresponding threats.   

The planning recovery planning process relates fish goals and status to specific actions, 
areas, and time periods.  The plan weighs all the human-induced effects on mortality at the 
various life stages, identifies how mortality can be reduced overall, and determines how the 
distribution of mortality may be changed among life stages to meet delisting and other social 
goals.  Analyses can identify the relative contributions of habitat, hatchery, and harvest impacts 
but should also relate necessary changes to specific activities that can produce the desired effect. 
Specific programs and activities need to be identified because that is the level at which changes 
will be implemented. Actions that are not specific will fail to provide a clear blueprint for 
recovery implementation and risk failure to ensure accountability.  Additionally, specific 
management actions are required by the ESA for recovery plans. 

Specificity of actions in time and space are important.  Viability risks are extremely 
sensitive to implementation schedules, especially where small population numbers increase 
exposure to chance extinction events. Thus, fishing strategies that reduce impacts in low run 
years but increase catch in large run years might substantially reduce the risks of a fixed fishing 
rate strategy while optimizing use benefits. Similar suites of measures can also produce 
substantially different outcomes if implemented in different areas. For instance, concentrating 
aggressive habitat restoration actions in high quality habitats where fish production is already 
significant may provide relatively little benefit. These areas might be high priorities for 
protection but low priorities for restoration. Within marginal areas, systematic analyses can help 
distinguish smaller subareas for priority restoration where modest investments can restore 
significant fish production, from severely degraded sites where similar investments would be 
relatively ineffective.  

4.8 The Role of Science:  Guidance with limitations 
Developing an effective recovery plan requires systematic analysis of questions related to 

goals, status, strategies, and proposed actions based on the best available scientific methods and 
data. Effective planning depends on our ability to answer five fundamental questions: 1) where 
are we now; 2) how did we get here; 3) where do we want to go; 4) how do we get to where we 
want to go; and 5) how do we know when we get there? While general planning questions can be 
simply stated, answers can be difficult and complicated. Fish are affected by a complex array of 
factors and our understanding of the relationships among these factors is highly indistinct. 
Efforts are complicated further by the need to consider multiple species, a large and diverse area, 
and a patchwork of overlapping jurisdictions and constituencies. Fundamental questions also 
need to be answered at several different levels in terms of fish populations and ESU status, fish 
life cycle parameters such as mortality rates, factors for decline, and programs by which actions 
may be affected.  

Expectations for recovery must be tempered by our imperfect understanding of the complex 
interaction of fish, limiting factors, past and future human activities, both positive and negative, 
and the difficulties of collecting sufficient data.  Analytical approaches that systematically relate 
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fish status to underlying causal factors and actions can be extremely powerful tools for 
evaluating recovery goals and actions.  Systematic analyses based on the scientific method 
facilitate the study, description, and prediction for complex systems and promote good decision-
making (Grant 1986).  

All scientific analyses and models are abstractions of reality subject to varying degrees of 
uncertainty.  Systematic scientific analyses will help to reduce uncertainty, but cannot eliminate 
it.  Clear paths for action will be provided by some analyses where relationships are well 
understood and data are substantial. Analyses in the gray areas may provide only partial answers 
and general compass directions. A gap will remain between what can be known and what cannot.  
Monitoring and evaluation will provide feedback for management adjustments, as well as 
identification of the most important data gaps and/or weaknesses, but the conundrum of 
decisions without full information will continue. Thus, science can continue to support recovery 
planning but will not supplant the need to make difficult policy decisions with less than complete 
information. 

Science ultimately provides a prescription for recovery that includes a picture of what 
constitutes a viable population and ESU, an inventory of significant limiting factors and threats, 
a list of effective actions that address factors and threats, and some sense of the order of 
magnitude of improvements and actions needed to approach recovery.  Science does not provide 
a cookbook recipe that details exactly how much of each action will be required to ensure 
recovery.  It describes the cake and tells us the ingredients but does not always reveal the exact 
portions of each ingredient or how long ingredients need to bake.  Science provides a direction 
for recovery, bounds the range of expectations, identifies critical first steps, and flags faulty logic 
and assumptions.   

4.9 Dealing with Uncertainty 
Incomplete human understanding of biological systems, and the effects of human activities 

and management practices on those systems, necessarily results in uncertainty about the 
outcomes of the Management Plan. These inherent uncertainties complicate the process of 
deriving, deducing, inferring, or interpolating estimates needed to characterize fish status and 
limiting factors, and to explicitly identify a level of effort and investment that will assure 
recovery.  No amount of research or evaluation can be expected to entirely eliminate 
uncertainties.  The key to effective analysis in an uncertain world is to frame an approach that 
recognizes that uncertainties will always remain in specific data, analyses, and assumptions.  
Uncertainties can be addressed by a variety of methods, all of which are incorporated into this 
plan: 

• Explicitly identifying uncertainties and transparently communicating methods, strengths, and 
limitations of each analysis.  

• Incorporating known uncertainties into the risk analyses. For instance, uncertain ocean 
survival can be incorporated as a random variable into a population viability modeling 
framework for integrated fish life cycle analysis to estimate extinction risks. Uncertainty in 
any population process or limiting factor can be captured similarly. 

• Incorporating corroborative analyses to validate key conclusions independently.  
• Using analyses to identify the risks associated with key uncertainties. Sensitivities of results 

to critical assumptions and uncertainties will be described for each analysis in the form of 
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testable hypotheses that may be addressed with future monitoring and evaluation through 
adaptive management. 

• Identifying conclusions based on the weight of all evidence, rather than any specific 
analytical result, and with appropriate safety margins to buffer risks. 

• Including substantive recovery strategies and measures that address every significant liiting 
factor and threat. 

• Including safety factors into the plan to provide a buffer to offset the effects of uncertain or 
faulty assumptions.  Safety factors may be included in biological objectives to target higher 
levels of recovery than minimum requirements in case efforts for some populations fall short. 

• Incorporating a strong monitoring, research, and evaluation program that provides an 
information feedback loop for modifying prescribed actions.  Future monitoring and analysis 
of lower Columbia salmon and steelhead populations is of utmost importance because, 
without sufficient data, it will be impossible to determine whether remedial actions are 
helping. Observed population trends, whether increasing or decreasing, may result from 
restoration activities, management changes, natural variation, or some combination of effects. 

 
 

 


