Rooftop Solar Photovoltaic Seventh Plan Approach to Analysis

CRAC November 13, 2014

Outline

- Approach for Seventh Plan
- Background
- Initial Findings
- Issues for CRAC Feedback

Why Solar PV at <u>Conservation</u> Advisory Committee?

- A "direct-application" renewable resource under the Regional Act
 - But does not get 10% Act Credit
- Largely a consumer-side resource
- Reduces load on the grid like EE
- Somebody needs to do it

Northwest Power and Conservation Council

3

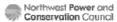
Issues for CRAC

- Is the approach appropriate?
- Forecast cost decline
- Total potential available: Max number installs
- Baseline adoption rate into load forecast
- Is three geographic areas sufficient?
- Ramp Rate: How fast could it be installed?
- How to estimate net back to grid

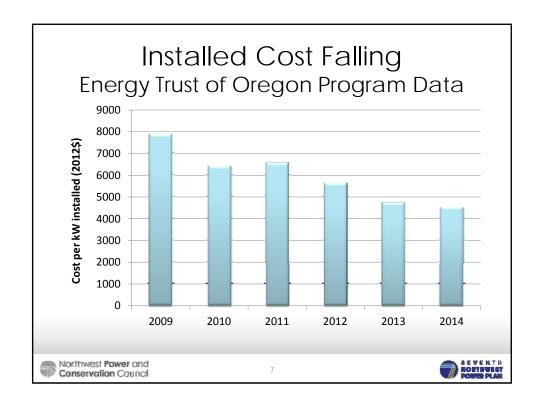
Approach for Seventh Plan

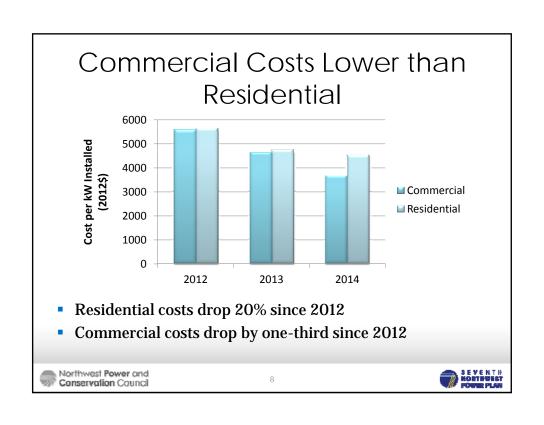
- 1) Estimate Rooftop Solar PV System Cost
- 2) Forecast Changes in Cost & Performance
- 3) Estimate Total Resource Potential
- 4) Forecast Status Quo Adoption Rate
- 5) Status Quo Adoption of PV Reduces Load Forecast
- 6) Remaining Potential Made Available to RPM
- 7) Vet Assumptions with Advisory Committees

5



By 2012 over 10,000 Utility Customers Installed 66 MW of PV Capacity (MW) Selling back about 1 aMW of Power


	Net Metering Customer Count	Capacity Installed (MW)	MWh of Power Sold back to utility
Idaho	349	2	2
Montana	1,010	4	122
Oregon*	6,269	43	8,687
Washington	3,222	17	932
Region	10,850	66	9,742


Source: EIA 861 annual Utility Net metering data

^{*}OPUC's reports that by 2013 about 8000 customers in Oregon are on net-metering.

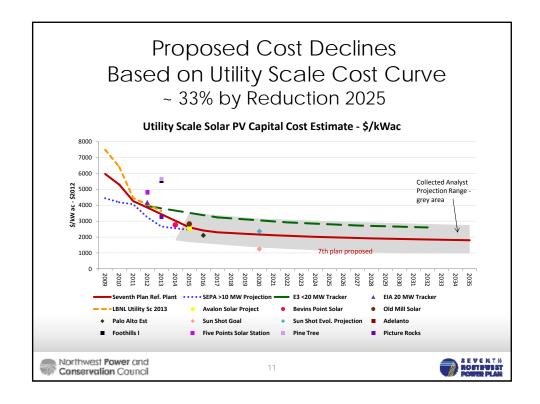
SEVENTH HOST POWER PLAN

Average Residential Size Going Up (Energy Trust of Oregon Data)

- 2012 = 4.2 kW
- 2014 = 5.3 kW

9

Cost & Savings Inputs


(In 2012\$ for a 2014 Install)

Element	Value(s)	Source/Method
Capital Cost (\$/Watt DC)	\$4.5 Res, \$3.8 Com	ETO 2014 cost
Annual O&M (\$/Watt DC)	\$0.032 Res, \$0.024 Com	NREL
Inverter Replacement	10-Yr Res, 15-Year Com	NREL
Typical System Size	5.3 kW Res, 35 kW Com	ETO 2012-2014
Life	25 Years	NREL
Program Admin Cost	?	
System Integration	\$1.07/MWh	BPA Tariff
Locations	Seattle, Portland, Boise	
Production & CF & Shape		PV Watts

Northwest Power and Conservation Council

10

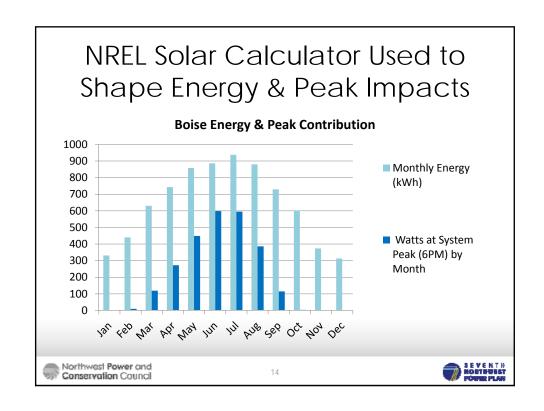
Example Cost of Rooftop PV Energy Levelized Cost \$/MWh (2012\$)

	Cost in 2014	Cost in 2025	Cost in 2035
Boise (Residential)	\$200	\$140	\$130
Boise (Commercial)	\$160	\$110	\$100
Portland (Residential)	\$260	\$180	\$170
Portland (Commercial)	\$210	\$140	\$130

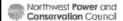
- Levelized Cost per MWh (2012\$)
- 25-Year Life
- 4% Discount Rate
- 5.3 kW System

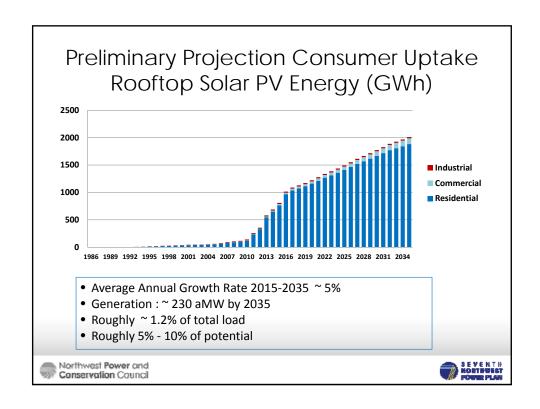
- No Regional Act Credit
- No Federal Tax Credit
- O&M Cost & Inverter
 Replacement & Integration
- No Program Admin Costs

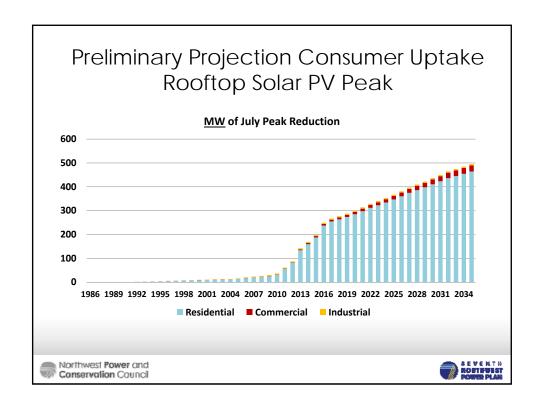
Total Potential Available

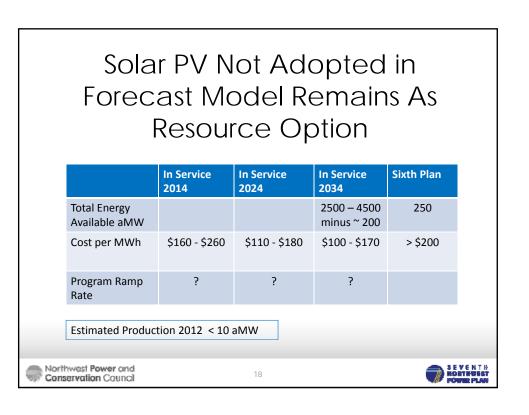

Sector	High (aMW)	Low (aMW)
Residential	2500	1500
Commercial	2000	1000
Total	4500	2500

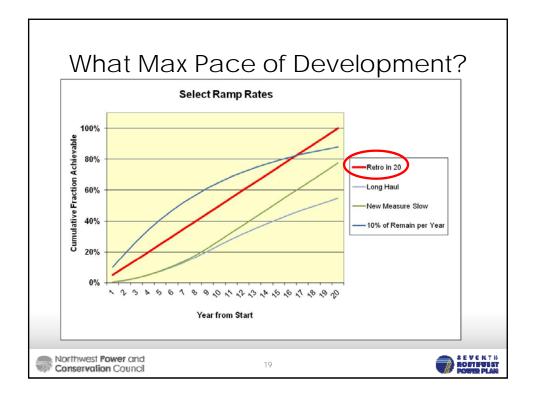
- Two Methods Used
 - Roof Area * Suitable Roof * kW/SF collector
 - Buildings * Suitability * Typical kW / Building
- Sources:
 - CBSA, RBSA, Solar Studies
 - Council forecast of residential & commercial stock


13


Forecast Long-Term Adoption (Business as Usual Case)


- Council's long-term load forecast model estimates continued consumer PV adoption rates
- Estimated for all sectors
 - Historical PV adoption trends (1985-2012)
 - Forecast retail power rates
 - Solar PV costs & performance
 - Both energy and peak impacts
- Forecast load reduced by forecast adoption of PV
 - Initial estimates: Consumer side-PV generation supplies 0.5-2.0% of regional electric load by 2035




15

Summary: Approach for Seventh Plan

- 1) Estimate Roof top Solar PV System Cost
 - Use recent cost data from Energy Trust of Oregon
 - By solar zone, residential & commercial applications
- 2) Forecast Changes in Cost & Performance
 - Use same cost curve decline as utility scale
 - Apply to rooftop prices
- 3) Estimate Total Resource Potential
 - Number of homes & businesses & roof area
 - Fraction applicable (adjust for orientation & shading)
- 4) Subtract market adoption
 - Long-term forecast model based on historical adoption
- 5) Apply maximum annual availability
 - Propose retrofit in 20 years
- 6) Add remaining potential as Distributed Generation option

Summarize CRAC Perspective

- Is the approach appropriate?
- Forecast cost decline
- Total potential available: Max number installs
- Baseline adoption rate into load forecast
- Is three geographic areas sufficient?
- Ramp Rate: How fast could it be installed?
- How to estimate net back to grid

21

End

Extra Slides

Background Solar PV

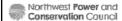
- It's a global market
- Modest consumer uptake in PNW
- Recent uptick in PNW adoption
- Solar PV costs falling
- Other trends: Ownership & financing

Northwest **Power** and **Conservation** Council

Typical Installed Cost

Residential: \$20,000 - \$25,000 (4-5 kW)

Commercial: \$50,000-\$200,000 (10-40 kW)


Largest: \$22 million (5.7 MW)

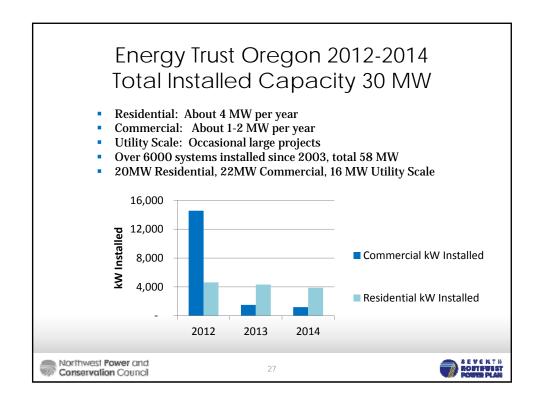
· Incentives typically cut consumer costs in half

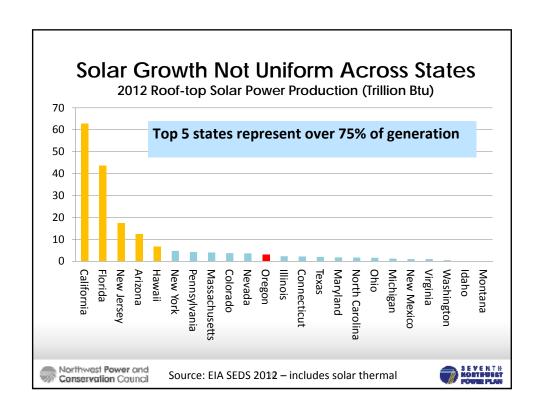
Third-Party leased projects at no initial customer cost

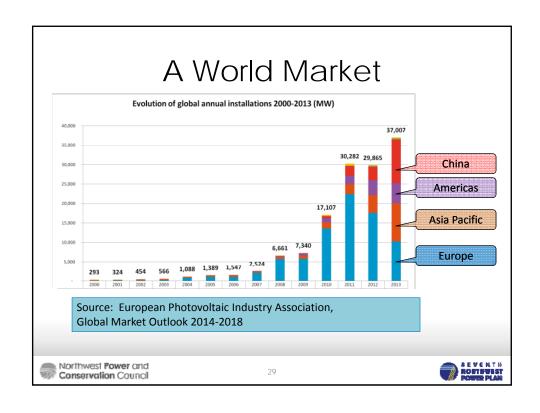
Provide 40-50% of residential electric needs

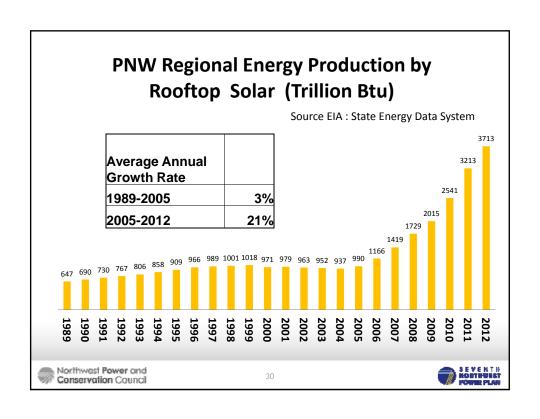
25

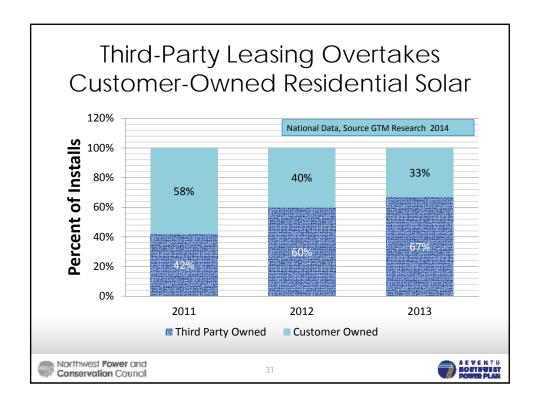
What's Happening in Programs?


Energy Trust of Oregon Program 2012-2014


- ETO Incentives for Residential
 - PGE: \$0.95/Watt, up to \$9500
 - PacifiCorp: \$0.70/Watt, up to \$7000
 - · Cash or Loan, or
 - Third-Party Leasing, fixed-term lease payment
- Plus State Tax Credit
 - Up to \$6000 per residence
- Plus Federal Tax Credit
 - 30% of cost through 2016



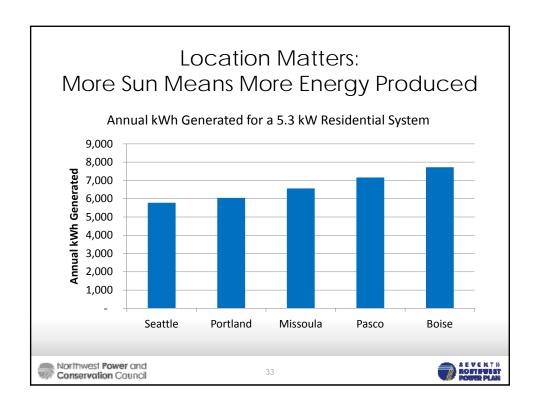






Emerging Ownership & Financing Options

Consumer interest in solar PV has generated new approaches, financing & ownership arrangements


- Community Solar
- Special Purpose Entities
- Solar-Specific Banks
- Lease Options
- Utility-Sponsored Models
- Bulk Purchasing

