Phil Rockefeller Chair Washington

> Tom Karier Washington

Henry Lorenzen Oregon

Bill Bradbury Oregon

W. Bill Booth Vice Chair Idaho

James Yost Idaho

Pat Smith Montana

Jennifer Anders Montana

February 3, 2015

MEMORANDUM

- TO: Council members
- FROM: Tom Eckman and Ben Kujala
- SUBJECT: Proposed Standard Scenario Results Comparison Metrics

BACKGROUND:

- Presenter: Tom Eckman and Ben Kujala
- Summary: Staff will present a proposed set of standardized metrics that will be generated for each scenario tested in the Regional Portfolio Model (RPM). It is anticipated that the results of the RPM, in addition to being presented to the Council, will be made available to regional stakeholders via the web. To facilitate comparison of results across scenarios, staff is proposing that a "standard" set of RPM outputs be made available in consistent format (i.e., graphic and/or tabular).
- Relevance: Interpretation of the results of the RPM's scenario analysis generally requires comparison of not only of the most successful resource strategies for a specific scenario, but also comparisons of results across scenarios. Identifying the primary factors or "metrics" that will be used to compare RPM results will allow staff to build the capability to automate the generation these outputs for each model run.
- Workplan: 1.D. Development of the Seventh Power Plan
- Background: The Council uses the results of the RPM scenario analyses to test how alternative resource strategies perform under a wide range of future conditions. While a resource strategy's *cost* and *risk* are the primary determinants used by the RPM to select the most successful strategies,

these are not the only metrics of interest. For example, in both the Fifth and Sixth Plan's Council members and stakeholders were also interested in comparing alternative resource strategies based on their level of conservation development, carbon emissions, average revenue requirements and resource mixes. Staff, anticipating that these and other metrics will also be of interest during the development of the Seventh Plan, is proposing to generate a standard set of RPM outputs for each scenario.

More Info: See Table 1 below.

Table 1 - DRAFT Potential Standard Metrics to Be Reported for ScenarioComparison

Potential Metrics ¹	Proposed Standard Output Units and Format	
Net Present Value (NPV) System Cost	Billions 2012\$, Provide Average and Graph of Distribution Across All Futures by Deciles	
Normalized NPV System Cost	Billions 2012\$/MWa, Provide Average and Graph of Distribution Across All Futures by Deciles	
NPV System Risk (TailVAR ⁹⁰)	Billions 2012\$, Provide Average and Graph of Distribution Across All Futures by Deciles	
Normalized NPV System Risk(TailVAR ⁹⁰)	Billions 2012\$/MWa, Provide Average and Graph of Distribution Across All Futures by Deciles	
Resource Mix by Fuel/Resource Type	MWa in 2020, 2025, 2030 & 2035 and Graph of Distribution Across All Futures by Deciles	
Energy Efficiency	u	
Hydro	u	
Natural Gas	u a	
Coal	u a a a a a a a a a a a a a a a a a a a	
Wind	<i>u</i>	
Utility Scale Solar PV	a	
Distributed Solar PV	u a a a a a a a a a a a a a a a a a a a	
Other Renewable	<i>u</i>	
Market Purchases	<i>u</i>	
Resources Acquired to Satisfy	MW of Capacity by Resource Type & Year Across All Futures by Deciles	
Adequacy Standard		
Resources Acquired Based on	MW of Capacity by Resource Type & Year Across All Futures by Deciles	
Economics		
Average Monthly Bill	2012\$/Month Across All Futures by Deciles	
Average Revenue/kWh	2012\$/kWh Across All Futures by Deciles	
GHG Emissions	CO ₂ MMTE (Should this include methane?) Across All Futures by Deciles	

¹ These metrics would be reported for the "least cost" and "least risk" resource strategies for each scenario tested. In addition, results for specific resource strategies that may or may not satisfy the RPM's "least risk for the lowest cost" optimization objective can be compared.

Scenario Number	Scenario Name	Scenario Description	Key Stress Factors /Constraints Tested
1A	Existing Policy without Uncertainty, w/o GHG reduction risk	Existing RPS, state and federal environmental regulations, including MATS and haze, CA and BC carbon costs, state carbon limits on new generation. Average value across all futures for all major sources of uncertainty.	Known generation fleet retirements and regulatory compliance costs. Are RPM results similar to Aurora "build out" under comparable assumptions?
18	Existing Policy with Uncertainty, w/o GHG reduction risk	Existing RPS, state and federal environmental regulations, including MATS and haze, CA and BC carbon costs, state carbon limits on new generation. Distribution of values for all major sources of uncertainty across all futures. No carbon regulation or cost risk.	Cost and Value of uncertainty risk mitigation with known generation fleet retirements and regulatory compliance costs Delineated by 1B – 1A

Scenario			Key Stress Factors
Number	Scenario Name	Scenario Description	/Constraints Tested
2A	Existing Policy with Uncertainty and with certain GHG reduction risk/target. Proposed Policy Target = Clean Power Plan/Clean Air Act 111(d) goal (e.g., 30% below 2005 level by 2030	Existing RPS, state and federal environmental regulations, including MATS and haze, CA and BC carbon costs, state carbon limits on new generation. Distribution of values for all major sources of uncertainty across all futures. <i>Scenarios will test</i> <i>specific carbon reduction targets or costs. Example:</i> Resource strategies must result in 30% less GHG emissions by 2030 compared to 2005 (or some variant of this policy)	Cost and Value of uncertainty risk mitigation with known generation fleet retirements and regulatory compliance costs Delineated by 2A – 1B
28	Existing Policy with Uncertainty and with certain GHG reduction risk/target. Proposed Policy Target = Mitigate to Estimated GHG Damage Cost	Existing RPS, state and federal environmental regulations, including MATS and haze, CA and BC carbon costs, state carbon limits on new generation. Distribution of values for all major sources of uncertainty across all futures. Scenarios will test specific carbon reduction targets or costs. Example: GHG emissions cost/price set equivalent to the US Interagency Working Group on Social Cost of Carbon (SCC)	Cost and Value of uncertainty risk mitigation with known generation fleet retirements and regulatory compliance costs. If SCC is used to represent damage cost, resulting portfolios theoretically achieve GHG mitigation equivalent to damage costs. Delineated by 2B – 1B
2C	Existing Policy with Uncertainty and with uncertain GHG reduction risk/target.	Existing RPS, state and federal environmental regulations, including MATS and haze, CA and BC carbon costs, state carbon limits on new generation. Distribution of values for all major sources of uncertainty across all futures. <i>Scenarios will test</i> <i>specific carbon reduction targets or costs.</i> GHG emissions cost/price allowed to vary across futures between \$X and \$Y	Cost and Value of uncertainty risk mitigation without known generation fleet retirements and regulatory compliance costs Delineated by 2C – 1B
Northwe Conserve	st Power and a tion Council	8	

Scenario	Scenario		Key Stress Factors
Number	Name	Scenario Description	/Constraints Tested
		Determine lowest feasible power	
		system carbon emissions resource	Cost and risk of
		strategies using only available	minimizing power
		generation, storage and energy	system GHG
	Lowering	efficiency <i>technologies</i> , including	emissions feasible
	carbon	anticipated cost reductions. May include	with existing
	emissions	retirement of all regional coal plants and	technology
	with current	replacement with no or lower carbon	Delineated by 3A –
ЗA	technology	emitting resources.	2C
	Lowering		
	carbon	Determine lowest feasible power	
	emissions	system carbon emissions resource	Cost and risk of
	with	strategies using emerging generation,	minimizing power
	emerging	storage and energy efficiency	system GHG
	technology	technologies, including anticipated	emissions feasible
	(e.g.,	cost reductions. May include retirement	with emerging
	storage, CO ₂	of all regional coal plants and	technology
	heat pumps,	replacement with no or lower carbon	Delineated by 3B –
3B	SSL)	emitting resources.	3A

Scenario			Key Stress Factors
Number	Scenario Name	Scenario Description	/Constraints Tested
	Major		
	Resource		
	Uncertainty -		Cost and risk
	Unexpected		associated with
	Loss of Major	Determine the resource strategies best	unanticipated loss of
	Resource (e.g.,	suited to managing the unanticipated loss	major, non-GHG gas
	CGS Forced	of a major (>1000 MW) non-GHG	emitting resource
4A	Retirement)	emitting resources	Delineated by 4A – 2C
	Major		
	Resource		
	Uncertainty		
	Anticipated		Cost and risk
	Loss of Major		associated with
	Resource(s)		replacement of
	(e.g.,	Determine the resource strategies best	existing hydro-
	Snake River	suited to managing the loss of a major	generation.
4B	Dam Removal,)	hydro resources	Delineated by 4B – 2C
			Cost and risk
			associated with
	Major		assumed upper and
	Resource	Determine the receiver of the true will be	lower limits on pace of
	Uncertainty –	Determine the resources that would be	conservation in
	Pace of	developed/displaced if the deployment of	Palina at a d hu 40/40
10.8 D	Conservation	energy efficiency is faster or slower than	Delineated by 4C/4D –
40 & D	Deployment	anticipated	20

Scenario			Key Stress Factors
Number	Scenario Name	Scenario Description	/Constraints Tested
	Integration of		Cost and risk
	Variable		associated with
	Resources		potentially large extra
	(i.e., Managing		regional surpluses
	the NW Impact	Determine the resource strategies that	available at low prices
	of the "Duck	would best serve the region should CA	during certain periods
	Curve"/50% CA	achieve a 50 percent RPS using primarily	of the day and year
5A	RPS)	solar PV	Delineated by 5A – 20
			Cost and risk
			associated with
	Southwest		uncertainty in price
	Market	Determine the resource strategies that	and liquidity
	Uncertainty:	would best serve the region under	associated with the
	Liquidity and	different scenarios of Southwest market	Southwest Market.
5B	Variability	availability.	Delineated by 5B – 20
		Determine the impact on resource	Change in hydro
		strategies under forecast future hydro-	output and system
	Climate	power output conditions and load	load shape
6	Change	conditions	Delineated by 6 – 2C

Potential Metrics	Proposed Standard Output Units and Format	
Net Present Value (NPV) System Cost	Billions 2012\$, Provide Average and Graph of Distribution Across All Futures by Deciles	
Normalized NPV System Cost	Billions 2012\$/MWa, Provide Average and Graph of Distribution Across All Futures by Dec	
NPV System Risk (TailVAR ⁹⁰)	Billions 2012\$, Provide Average and Graph of Distribution Across All Futures by Deciles	
Normalized NPV System Risk(TailVAR ⁹⁰) Billions 2012\$/MWa, Provide Average and Graph of Distribution Across All Futures		
Resource Mix by Fuel/Resource Type	MWa in 2020, 2025, 2030 & 2035 and Graph of Distribution Across All Futures by Decile	
Energy Efficiency	u .	
Hydro	<i>u</i>	
Natural Gas	<i>u</i>	
Coal	и И	
Wind	<i>u</i>	
Utility Scale Solar PV "		
Distributed Solar PV "		
Other Renewable "		
Market Purchases "		
Resources Acquired to Satisfy Adequacy Standard	urces Acquired to Satisfy Adequacy MW of Capacity by Resource Type & Year Across All Futures by Deciles Standard	
Resources Acquired Based on Economics	MW of Capacity by Resource Type & Year Across All Futures by Deciles	
Average Monthly Bill	Monthly Bill 2012\$/Month Across All Futures by Deciles	
Average Revenue/kWh	/kWh 2012\$/kWh Across All Futures by Deciles	
GHG Emissions	CO ₂ MMTE (Should this include methane?) Across All Futures by Deciles	

Г

